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Abstract
We propose a new systematic fibre bundle formulation of nonrelativistic
quantum mechanics. The new form of the theory is equivalent to the usual one
and is in harmony with the modern trends in theoretical physics and potentially
admits new generalizations in different directions. In it the Hilbert space of a
quantum system (from conventional quantum mechanics) is replaced with an
appropriate Hilbert bundle of states and a pure state of the system is described
by a lifting of paths or sections along paths in this bundle. The evolution of
a pure state is determined through the bundle (analogue of the) Schrödinger
equation. Now the dynamical variables and density operators are described via
liftings of paths or morphisms along paths in suitable bundles. The mentioned
quantities are connected by a number of relations derived in this paper.

The present, first, part of this investigation is devoted to the introduction of
basic concepts on which the fibre bundle approach to quantum mechanics rests.
We show that the evolution of pure quantum mechanical states can be described
as a suitable linear transport along paths, called evolution transport, of the state
liftings in the Hilbert bundle of states of a considered quantum system.

PACS numbers: 02.40.Ma, 03.65.Ca, 03.65.Ta, 04.40.Ma

AMS classification scheme numbers: 81P05, 81P99, 81Q99, 81S99

1. Introduction

Usually the standard nonrelativistic quantum mechanics of pure states is formulated in
terms of vectors and operators in a Hilbert space [1–5]. This is in discord and not in
harmony with the new trends in (mathematical) physics [6–8] in which the theory of fibre
bundles [9, 10], in particular vector bundles [11, 12], is essentially used. This paper (and
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its further continuation(s)) is intended to incorporate the quantum theory in the family of
fundamental physical theories based on the background of fibre bundles.

The idea of geometrization of quantum mechanics is an old one (see, for example, [13]
and references therein). A good motivation for such an approach is given in [13,14]. Different
geometrical structures in quantum mechanics were introduced [15, 16], for instance inner
products(s) [2, 3, 13, 17], (linear) connection [14, 17, 18], symplectic structure [14], complex
structure [13] etc. The introduction of such structures admits a geometrical treatment of some
problems, for instance, the dynamics in the (quantum) phase space [13] and the geometrical
phase [14]. In a very special case, a gauge structure, i.e. a parallel transport corresponding to a
linear connection, is pointed out in quantum mechanics in [19]. For us this paper is remarkable
for the fact that equation (10) in it is a very ‘ancient’ special version of the transformation law
for the matrix-bundle Hamiltonian, derived in this investigation. It, together with the bundle
(analogue of the) Schrödinger equation, shows that (up to a constant) the Hamiltonian plays
the role of a gauge field (linear connection) with respect to the quantum evolution. In [18,20]
one finds different (vector) bundles defined on the base of the (usual) Hilbert space of quantum
mechanics or its modifications. In these works different parallel transports in the corresponding
bundles are introduced too. Some interesting ideas concerning the theory of fibre bundles and
quantum mechanics can be found in [21].

In the 1970s a whole theory, called geometric quantization, was developed to clarify the
relations between classical and quantum mechanics in geometrical terms. It started from the
early works [22–26] although some of its basic ideas were presented in [27,28]. A recent review
of the foundations of geometric quantization can be found in [29] (see also the references in
this paper). Since the geometric quantization concerns only the kinematical aspects of the
quantum theory (on a basis quite different from ours), it will not be treated in our exposition,
but it is worth mentioning that this theory contains important geometrical structures such as
the symplectic one and vector (in particular line) bundles and linear connections in them (see,
e.g., [30, 31]).

A general feature of all of the references cited above is that in them all geometric concepts
are introduced by using in one way or another the accepted mathematical foundation of quantum
mechanics, namely a suitable Hilbert or projective Hilbert space and operators acting in it. The
Hilbert space may be extended in a certain sense or replaced by a more general space, but this
does not change the main ideas. One of the aims of this paper is thus to change this mathematical
background of quantum mechanics.

Separately we have to mention the approach of Prugovečki to the quantum theory, a
selective summary of which can be found in [32] (see also references therein) and in [33]. It
can be characterized as ‘stochastic’ and ‘bundle’. The former feature will not be discussed in
the present investigation; thus we lose some advantages of the stochastic quantum theory to
which we shall return elsewhere. The latter ‘part’ of Prugovečki’s approach has some common
aspects with our present work but, generally, it is essentially different. For instance, in both
cases the quantum evolution from point to point (in spacetime) is described via a kind of
(parallel or generic linear) transport (along paths) in a suitable Hilbert fibre bundle, but the
notion of a ‘Hilbert bundle’ in our approach and that of Prugovečki is different regardless
of the fact that in both cases the typical (standard) fibre is practically the same (when one
and the same theory is concerned). Besides, we do not need even to introduce the Poincaré
(principal) fibre bundle over the spacetime or phase space which plays an important role
in Prugovečki’s theory. Also we have to notice that the concepts of quantum and parallel
transport used in it are special cases of the notion of a ‘linear transport along paths’ introduced
in [34,35]. The application of the last concept, which is accepted in the present investigation,
has many advantages, significantly simplifies some proofs and makes certain results ‘evident’



Bundle quantum mechanics: I 4889

or trivial (e.g. the last part of section 2 and the whole section 4 of [32]). Finally, at the present
level (nonrelativistic quantum mechanics), our bundle formulation of the quantum theory is
insensitive with respect to the spacetime curvature. A detailed comparison of our approach to
the quantum theory and that of Prugovečki will be made elsewhere.

Another geometric approach to quantum mechanics is proposed in [36] and partially
in [37]; the latter is, with a few exceptions, almost a review of the former. These works suggest
two ideas which are quite important for us. First, the quantum evolution could be described as a
(kind of) parallel transport in an infinite-dimensional (Hilbert) fibre bundle over the spacetime.
Second, the concrete description of a quantum system should explicitly depend on (the state
of) the observer with respect to which it is depicted (or who ‘investigates’ it). These ideas are
incorporated and developed in our paper.

From the literature known to the author, the work [38] is closest to the approach
developed here. It contains an excellent motivation for applying the fibre bundle technique
to nonrelativistic quantum mechanics2. Generally, in this paper the evolution of a quantum
system is described as a ‘generalized parallel transport’ of appropriate objects in a Hilbert fibre
bundle over the one-dimensional manifold R+ := {t : t ∈ R, t � 0}, interpreted as a ‘time’
manifold (space). We shall comment on [38] in the second part of this series, after developing
the formalism required for its analysis. Besides, we emphasize once again, the paper [38]
contains an excellent description of why the apparatus of fibre bundle theory is a natural scene
for quantum mechanics.

An attempt to formulate quantum mechanics in terms of a fibre bundle over the phase space
is made in [39]. Regardless of some common features, this paper is quite different from the
present investigation. We shall comment on it later. In particular, in [39] the gauge structure
of the arising theory is governed by a nondynamical connection related to the symplectic
structure of the system’s phase space, while in this paper analogous structure (linear transport
along paths) is uniquely connected with the system’s Hamiltonian, playing here the rôle of a
gauge field itself.

We should also mention a recent approach to quantum mechanics, called covariant
quantum mechanics, developed at the beginning of the 1990s by Modugno and Jadczyk [40–44]
(see references therein too), based on jets, connections and cosymplectic forms. It utilizes the
basic ‘bundle’ idea of [38] and employs two geometrical structures that are similar to those
we intend to use in this paper: a quantum bundle, which is a complex line bundle (i.e. one-
dimensional vector bundle) over spacetime (equipped with Hermitian metric), and a Hilbert
bundle over a time manifold (realized as R+ or R). Generally, the covariant quantum mechanics
is quite different from the theory we are going to develop in the present exposition. However, the
cited references, especially [43], contain a good motivation why the fibre bundle formalism is a
natural one for describing quantum mechanical events. We should also emphasize the treatment
of quantum mechanical evolution as a parallel transport in a Hilbert bundle over time (manifold)
in [43] which is quite similar to our understanding of this phenomenon in the present paper.

This paper is a direct continuation of the considerations in [45], which paper, in fact, may
be regarded as its preliminary version. Here we suggest a purely fibre bundle formulation
of the nonrelativistic quantum mechanics. The proposed geometric formulation of quantum
mechanics is dynamical in a sense that all geometrical structures employed for the description
of a quantum system depend on and are determined by the dynamical characteristics of the
system. This new form of the theory is entirely equivalent to the usual one, which is a
consequence or our step by step equivalent reformulation of the quantum theory. The bundle
description is obtained on the base of the developed by the author theory of transports along

2 The author thanks Dr J F Cariñena (University of Zaragoza) for drawing his attention to [38] in May 1998.
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paths in fibre bundles [34, 35, 46], generalizing the theory of parallel transport. It is partially
generalized here to the infinite-dimensional case.

The main object in quantum mechanics is the Hamiltonian (operator) which, through the
Schrödinger equation, governs the evolution of a quantum system [2–5]. In our novel approach
its role is played by a suitable linear transport along paths in an appropriate Hilbert bundle. It
turns out that up to a constant the matrix-bundle Hamiltonian, which is uniquely determined
by the Hamiltonian in a given field of bases, coincides with the matrix of the coefficients of this
transport (cf an analogous result in [45, section 5]). This fact, together with the replacement
of the usual Hilbert space with a Hilbert bundle, is the corner-stone for the possibility for the
new formulation of the nonrelativistic quantum mechanics.

The present, first, part of our investigation is organized as follows.
In section 2 are reviewed some well known facts from the standard quantum mechanics

and our notation is partially fixed. Here, as well as throughout this paper, we follow the degree
of rigour established in the physical literature, but, if required, this paper can be reformulate
to meet the present-day mathematical standards. For this purpose one can use, for instance,
the quantum mechanical formalism described in [4] or in [47] (see also [48, 49]).

Section 3 contains preliminary mathematical material required for the goals of this paper.
In section 3.1 are collected some basic definitions concerning vector and Hilbert bundles. Next,
in section 3.2, the notion of a linear transport along paths in vector bundles is recalled and
some its peculiarities in the Hilbert bundle case are pointed out. In section 3.3 the concepts of
liftings of paths, sections along paths and derivations along paths are introduced.

Section 4 begins the building of the new bundle approach to quantum mechanics. After a
brief review of some references (section 4.1), a motivation for the application of fibre bundle
formalism to quantum mechanics is presented (section 4.2). Also some heuristic considerations
of elements of the new theory are given. Section 4.3 introduces the basic initial assertions of
the bundle version of quantum mechanics. They are formulated in a form of two postulates
which are enough for the bundle description of the evolution of a quantum system. In the
bundle approach the analogues of the Hilbert space of states and state vector of a system are
the systems Hilbert bundle (of states) and the (state) lifting of paths (or sections along paths)
in it. Preliminary summary of some results of this investigation is presented in section 4.4.

In section 5 it is proved that the evolution operator of a quantum system is (equivalently)
replaced in the bundle description by a suitable linear transport along paths, called evolution
transport.

The paper closes with section 6.

2. Evolution of pure quantum states (review)

In quantum mechanics [2,3,5,49] a pure state of a quantum system is described by state vector
ψ(t) (in Dirac’s [1] notation |t〉). Generally, it depends on the time t ∈ R and belongs to a
Hilbert space F (specific to any concrete system) generically endowed with a nondegenerate
Hermitian scalar product3 〈·|·〉 : F × F → C. For every two instants of time t2 and t1 the
corresponding state vectors are connected by the equality

ψ(t2) = U(t2, t1)ψ(t1) (2.1)

3 For some (e.g. unbounded) states the system’s state vectors form a more general space than a Hilbert one. This is
insignificant for the following presentation. A sufficient summary, for our purposes, of Hilbert space theory is given
in [50, appendix].
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where U is the evolution operator of the system [4, chapter 4, section 3.2]. It is supposed to
be linear and unitary, i.e.

U(t2, t1)(λψ(t1) + µξ(t1)) = λU(t2, t1)(ψ(t1)) + µU(t2, t1)(ξ(t1)) (2.2)

U†(t1, t2) = U−1(t2, t1) (2.3)

for every λ,µ ∈ C and state vectors ψ(t), ξ(t) ∈ F , and such that for any t

U(t, t) = idF . (2.4)

Here idX means the identity map of a set X and the dagger (†) denotes Hermitian conjugation,
i.e. if ϕ,ψ ∈ F and A : F → F , then A† is defined by

〈 A†ϕ|ψ〉 = 〈ϕ| Aψ〉. (2.5)

In particular U† is defined by 〈 U†(t1, t2)ϕ(t2)|ψ(t1)〉 = 〈ϕ(t2)| U(t2, t1)ψ(t1)〉. So, knowing
ψ(t0) = ψ0 for some moment t0, one knows the state vector for every moment t as
ψ(t) = U(t, t0)ψ(t0) = U(t, t0)ψ0.

Let H(t) be the Hamiltonian (function) of a system. It generally depends on the time t

explicitly4 and it is supposed to be a Hermitian operator, i.e. H†(t) = H(t). The Schrödinger
equation (see [1, section 27] or [4, chapter 5, section 3.1])

ih̄
dψ(t)

dt
= H(t)ψ(t) (2.6)

with i ∈ C and h̄ being, respectively, the imaginary unit and Plank’s constant (divided by 2π ),
together with some initial condition

ψ(t0) = ψ0 ∈ F (2.7)

is postulated in the quantum mechanics. They determine the time evolution of a state vector
ψ(t).

The substitution of (2.1) into (2.6) shows that there is a bijective correspondence between U
and H described by

ih̄
∂ U(t, t0)

∂t
= H(t) ◦ U(t, t0) U(t0, t0) = idF (2.8)

where ◦ denotes composition of maps. If U is given, then

H(t) = ih̄
∂ U(t, t0)

∂t
◦ U−1(t, t0) = ih̄

∂ U(t, t0)
∂t

◦ U(t0, t) (2.9)

where we have used the equality

U−1(t2, t1) = U(t1, t2)
which follows from (2.1) (see also below (2.10) or section 5). Conversely, if H is given,
then [3, chapter 8, section 8] U is the unique solution of the integral equation U(t, t0) =
idF + 1

ih̄

∫ t

t0
H(τ )U(τ, t0) dτ , i.e. we have

U(t, t0) = Texp
∫ t

t0

1

ih̄
H(τ ) dτ (2.10)

where Texp
∫ t

t0
· · · dτ is the chronological (called also T-ordered, P-ordered or path-ordered)

exponent (defined, for example, as the unique solution of the initial-value problem (2.8); see

4 Of course, the Hamiltonian also depends on the observer with respect to which the evolution of the quantum system
is described. This dependence is usually implicitly assumed and not written explicitly [1, 3]. This deficiency will
be eliminated in a natural way later in this paper. The Hamiltonian can also depend on other quantities, such as the
(operators of the) system’s generalized coordinates. This possible dependence is insignificant for our investigation
and will not be written explicitly.
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also [38, equation (1.3)])5. From here it follows that the Hermiticity of H, H† = H, is
equivalent to the unitarity of U (see (2.3)).

Let us note that for the rigorous mathematical understanding of the derivations in (2.6),
(2.8), and (2.9), as well as of the chronological (path-ordered) exponent in (2.10), one has to
apply the mathematical apparatus developed in [4], but this is outside the scope of this paper.

If A(t) : F → F is the (linear Hermitian) operator corresponding to a dynamical variable
AAA at the moment t , then the mean value (= the mathematical expectation) which it assumes at
a state described by a state vector ψ(t) with a finite norm is

〈 A〉tψ := 〈 A(t)〉tψ := 〈 A(t)〉ψ(t) := 〈ψ(t)| A(t)ψ(t)〉
〈ψ(t)|ψ(t)〉 . (2.11)

This is interpreted as the observed value of AAA that can be measured experimentally.
Often the operator A can be chosen independent of the time t . (This is possible, for

example, if A does not depend on t explicitly [3, chapter 7, section 9] or if the spectrum of
A does not change in time [2, chapter 3, section 13].) If this is the case, it is said that the
system’s evolution is depicted in the Schrödinger picture of motion [1, section 28], [3, chapter 7,
section 9].

3. Mathematical preliminaries

Before starting with the formulation of quantum mechanics in terms of fibre bundles, several
geometrical tools have to be known. In this section is collected most of the pure mathematical
material required for this goal. First, we present some facts from the theory of Hilbert
bundles. These bundles will replace the Hilbert spaces in quantum mechanics. Next, we
give a brief introduction to the theory of linear transports along paths in vector bundles and
specify peculiarities of the Hilbert bundle case. The linear transports are needed for the bundle
description of quantum evolution. Finally, we pay attention to liftings of paths and section
along paths. These objects will replace the state vectors of ordinary quantum mechanics.

3.1. Hilbert bundles

At the beginning, to fix the terminology, we recall the definitions of bundle, section, fibre map,
morphism and vector bundle6.

A bundle is a triple (E, π, B) of sets E and B, called the (total) bundle space and
the base (space) respectively, and (generally) surjective mapping π : E → B, called the
projection. For every b ∈ B the set π−1(b) is called the fibre over b. If X ⊆ B, the bundle
(E, π, B)|X := (π−1(X), π |π−1(X), X) is called the restriction on X of a bundle (E, π, B).
A section of the bundle (E, π, B) is a mapping σ : B → E such that π ◦ σ = idB ; i.e.,
σ : b �→ σ(b) ∈ π−1(b). The set of sections of (E, π, B) is denoted by Sec(E, π, B).

A mapping ϕ : E → E is said to be a fibre map if it carries fibres into fibres. Precisely,
ϕ is a fibre map iff, for every b ∈ B, there exists a point b′ ∈ B such that ϕ maps π−1(b)

into π−1(b′); i.e., ϕ|π−1(b) : π−1(b) → π−1(b′). A (fibre) morphism of the bundle (E, π, B)

is a pair (ϕ, f ) of maps ϕ : E → E and f : B → B such that π ◦ ϕ = f ◦ π . The set of
morphisms of (E, π, B) is denoted by Mor(E, π, B), i.e.

Mor(E, π, B) := {(ϕ, f )|ϕ : E → E, f : B → B, π ◦ ϕ = f ◦ π}.
5 The physical meaning of U as a propagation function, as well as its explicit calculation (in component form) via H
can be found, for example, in [51, sections 21 and 22].
6 For details, examples etc, see [9, 11, 12, 52–55].
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A map ϕ : E → E is called a morphism over B or B-morphism if (ϕ, idB) ∈ Mor(E, π, B).
The set of all B-morphisms of (E, π, B) will be denoted by MorB(E, π, B); i.e.,

MorB(E, π, B) := {ϕ|ϕ : E → E, π ◦ ϕ = π}.
For every morphism (ϕ, f ) ∈ Mor(E, π, B), the map ϕ is a fibre map since from

π◦ϕ = f ◦π it follows thatϕ|π−1(b) : π−1(b) → π−1(f (b)) for every b ∈ B. In particular, any
B-morphism ϕ ∈ MorB(E, π, B) is a fibre-preserving map as ϕ|π−1(b) : π−1(b) → π−1(b).
Conversely, every fibre map ϕ : E → E defines a morphism (ϕ, f ) with f := π ◦ ϕ ◦ π−1 :
B → B; f is called the induced map of the fibre map ϕ, and (ϕ, f ) is the induced morphism7.

Consider the set of point-restricted morphisms

E0 : = {(ϕb, f ) |ϕb = ϕ|π−1(b), b ∈ B, (ϕ, f ) ∈ Mor(E, π, B)}
= {(ϕb, f ) |ϕb : π−1(b) → π−1(f (b)), b ∈ B, f : B → B}

i.e. (ψ, f ) ∈ E0 iff f : B → B and there exists a unique b ∈ B such that ψ : π−1(b) →
π−1(f (b)) and we write ψb for ψ |π−1(b). Defining π0 : E0 → B by π0(ϕb, f ) := b for
(ϕb, f ) ∈ E0, we see that (E0, π0, B) is a bundle over the same base B as (E, π, B). This is
the bundle of point-restricted morphisms of (E, π, B). It will be denoted by mor(E, π, B);
i.e., mor(E, π, B) := (E0, π0, B).

There exists a bijective correspondence τ such that

Mor(E, π, B)
τ−→ Sec

(
mor(E, π, B)

)
.

In fact, for (ϕ, f ) ∈ Mor(E, π, B), we put τ : (ϕ, f ) �→ τ(ϕ,f ) with τ(ϕ,f ) : b �→ τ(ϕ,f )(b) :=
(ϕ|π−1(b), f ) ∈ π−1

0 (b) for every b ∈ B. Conversely, for σ ∈ Sec(mor(E, π, B)), we set
τ−1 : σ �→ τ−1(σ ) := (ϕ, f ) ∈ Mor(E, π, B), where, if b ∈ B and σ(b) = (ϕb, f ), the map
ϕ : E → E is defined by ϕ|π−1(b) := ϕb.

The above constructions can be modified for morphisms over the bundle base as follows.
The bundle morB(E, π, B) of point-restricted morphisms over B of (E, π, B) has a base B,
bundle space

EB
0 : = {ϕb |ϕb = ϕ|π−1(b), b ∈ B, ϕ ∈ MorB(E, π, B)}

= {ϕb |ϕb : π−1(b) → π−1(b), b ∈ B}
and projection πB

0 : EB
0 → B such that

πB
0 (ϕb) := b ϕb ∈ EB

0 .

For brevity, the bundle morB(E, π, B)will be referred to as the bundle of restricted morphisms
of (E, π, B). Evidently, the set EB

0 coincides with the set of point-restricted fibre-preserving
fibre maps of (E, π, B). There is a bijection

MorB(E, π, B)
χ−→ Sec

(
morB(E, π, B)

)
given by χ : ϕ �→ χϕ , ϕ ∈ MorB(E, π, B), with χϕ : b �→ χϕ(b) := ϕ|π−1(b), b ∈ B. Its
inverse is χ−1 : σ �→ χ−1(σ ) = ϕ, σ ∈ Sec(morB(E, π, B)), with ϕ : E → E given via
ϕ|π−1(b) = σ(b) for every b ∈ B.

If E and B are topological spaces, which is the most widely considered case, the bundle
(E, π, B) is called topological. In this case in the definition of a bundle is included the
bundle property: there exists a (topological) space E such that for each b ∈ B there is an
open neighbourhood (‘directory space’) W of b in B and homeomorphism (‘decomposition
function’) φW : W × E → π−1(W) of W × E onto π−1(W) satisfying the condition
(π ◦ φW)(w, e) = w for ψ ∈ W and e ∈ E ; i.e., π ◦ φW = idW . Besides, if the restriction

7 The transport along a path γ : J → B is an example of a fibre map along γ—vide infra section 3.2.
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φW |b : {b} × E → π−1(b), b ∈ B, is a homeomorphism, the bundle property is called local
triviality, E is called a (typical, standard) fibre of the bundle, the bundle is called locally trivial
and every fibre π−1(b) is homeomorphic to E for every b ∈ B.

A vector bundle is a locally trivial bundle (E, π, B) such that (i) the fibres π−1(b), b ∈ B,
and the standard fibre E are (linearly) isomorphic vector spaces and (ii) the decomposition
mappings φW and their restrictions φW |b are (linear) isomorphisms between vector spaces.
The dimension of E , dim E = dim π−1(b) for every b ∈ B, is called the dimension of the
vector bundle; it is called dim E-dimensional. Here the vector spaces are considered over
some field, usually the real or complex numbers; in the context of this paper, the complex case
will be employed.

When vector bundles are considered, in the definition of a morphism or B-morphism is
included the condition that the corresponding fibre maps are linear. For example, ϕ : E → E

is morphism over B of a vector bundle (E, π, B) if π ◦ ϕ = π and the restricted mapping
ϕ|π−1(b) : π−1(b) → π−1(b) is linear for every b ∈ B.

Definition 3.1. A Hilbert (fibre) bundle is a vector bundle whose fibres over the base are
isomorphic Hilbert spaces or, equivalently, whose (standard) fibre is a Hilbert space.

In the present investigation we shall show that the Hilbert bundles can be taken as a natural
mathematical framework for a geometrical formulation of quantum mechanics.

Some quite general aspects of the Hilbert bundles can be found in [50, chapter 7]. Below
we are going to consider only certain specific properties and structures of the Hilbert bundle
theory required for the present investigation.

Let (F, π,M) be a Hilbert bundle with bundle spaceF , baseM , projection π and (typical)
fibre F . The fibre over x ∈ M will often be denoted by Fx , Fx := π−1(x). Let lx : Fx → F ,
x ∈ M , be the isomorphisms defined by the restricted decomposition functions; namely, as
φW |x : {x} × F → Fx , we define lx via φW |x(x, ψ) =: l−1

x (ψ) ∈ π−1(x) for every ψ ∈ F .
We call the maps lx point-trivializing maps (isomorphisms).

Let 〈·|·〉 : F × F → R be the (nondegenerate Hermitian) scalar product in the Hilbert
space F and, respectively, for every x ∈ M the map 〈·|·〉x : Fx ×Fx → R be the scalar product
in the fibreFx considered as a Hilbert space8. For a general Hilbert bundle (F, π,M), the scalar
products 〈·|·〉x , x ∈ M , and 〈·|·〉 are completely independent. Such a situation is unsatisfactory
from the viewpoint of many applications for which the Hilbert spaces Fx , x ∈ M , and F are
required to be isometric. We say that the vector structure of the Hilbert bundle (F, π,M)

is compatible with its metric structure if the (linear) isomorphisms lx : F → F preserve
the scalar products (are metric preserving), namely iff 〈ϕx |ψx〉x = 〈lx(ϕx)|lx(ψx)〉 for every
ϕx, ψx ∈ Fx . A Hilbert bundle with compatible vector and metric structure will be called
a compatible Hilbert bundle. In such a bundle the linear isomorphisms lx |x ∈ M not only
(isomorphically) connect the vector structures of the fibres Fx , x ∈ M , and F , but they also
transform the (Hermitian) metric structure 〈·|·〉 from F to F for every x ∈ M according to

〈·|·〉x = 〈lx · |lx ·〉 x ∈ M (3.1)

and, consequently, from Fx to F through

〈·|·〉 = 〈l−1
x · |l−1

x ·〉x x ∈ M. (3.1′)

It is easy to see that the maps lx→y := l−1
y ◦ lx : π−1(x) → π−1(y) are (i) fibre maps for fixed

y, (ii) linear isomorphisms and (iii) isometric, i.e. metric preserving in a sense that

〈lx→y · |lx→y ·〉y = 〈·|·〉x. (3.2)

8 The map x �→ 〈·|·〉x , x ∈ M , or the collection of maps {〈·|·〉x , x ∈ M} is called a fibre metric on (F, π,M).
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Rewording, we can say that lx→y are fibre-isometric isomorphisms. Consequently, all of the
fibres over the base and the standard fibre of a compatible Hilbert bundle are (linearly) isometric
and isomorphic Hilbert spaces.

From now on in this investigation, only compatible Hilbert bundles will be employed. For
the sake of brevity, we shall call them simply Hilbert bundles.

Now some definitions in compatible Hilbert bundles are in order. Notice that below we
present the minimum of material concerning Hilbert bundles which is absolutely required for
formulation of quantum mechanics in terms of bundles.

Defining the Hermitian conjugate map (operator) A‡
x : F → Fx of a map Ax : Fx → F by

〈A‡
xϕ|χx〉x := 〈ϕ|Axχx〉 ϕ ∈ F χx ∈ Fx (3.3)

we find (see (3.1))

A‡
x = l−1

x ◦ (
Ax ◦ l−1

x

)†
(3.4)

where the dagger denotes Hermitian conjugation in F (see (2.5)).
We call a map Ax : Fx → F unitary if

A‡
x = A−1

x . (3.5)

Evidently, the isometric isomorphisms lx : Fx → F are unitary in this sense:

l‡x = l−1
x . (3.6)

Similarly, the Hermitian conjugate map to a map Ax→y ∈ {Cx→y : Fx → Fy, x, y ∈ M} is
a map A‡

x→y : Fx → Fy defined via

〈A‡
x→y!x|"y〉y := 〈!x|Ay→x"y〉x !x ∈ Fx "y ∈ Fy. (3.7)

Its explicit form is

A‡
x→y = l−1

y ◦ (
lx ◦ Ay→x ◦ l−1

y

)† ◦ lx. (3.8)

As (A†)† ≡ A for any A : F → F , we have(
A‡

x→y

)‡ = Ax→y. (3.9)

If Bx→y ∈ {Cx→y : Fx → Fy, x, y ∈ M}, then a simple verification shows(
By→z ◦ Ax→y

)‡ = A‡
y→z ◦ B‡

x→y x, y, z ∈ M. (3.10)

A map Ax→y is called Hermitian if

A‡
x→y = Ax→y. (3.11)

A simple calculation proves that the maps lx→y := l−1
y ◦ lx are Hermitian.

A map Ax→y : Fx → Fy is called unitary if it has a left inverse map and

A‡
x→y = A−1

y→x (3.12)

where A−1
x→y : Fy → Fx is the left inverse of Ax→y, i.e. A−1

x→y ◦ Ax→y := idFx .
A simple verification by means of (3.7) shows the equivalence of (3.12) with

〈Ay→x · |Ay→x·〉x = 〈·|·〉y : Fy × Fy → C (3.12′)

i.e. the unitary maps are fibre-metric compatible in a sense that they preserve the fibre scalar
(inner) product. Such maps will be called fibre isometric or simply isometric.

It is almost evident that the maps lx→y = l−1
y ◦ lx are unitary, that is we have9

l‡x→y = lx→y = l−1
y→x lx→y := l−1

y ◦ lx : π−1(x) → π−1(y). (3.13)

9 The Hermiticity and at the same time unitarity of lx→y is not incidental as they define a (flat) linear transport (along
paths or along the identity map of M) in (F, π,M) (see (3.23), the paragraph after (3.28) and footnote 12).
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Let A be a morphism overM of (F, π,M), i.e. A : F → F and π ◦A = π , and Ax := A|Fx
.

The Hermitian conjugate bundle morphism A‡ to A is defined by (cf (3.7))

〈A‡!x|"x〉x := 〈!x|A"x〉x !x, "x ∈ Fx. (3.14)

Thus (cf (3.8))

A‡
x := A‡

∣∣
Fx

= l−1
x ◦ (

lx ◦ Ax ◦ l−1
x

)† ◦ lx. (3.15)

A bundle morphism A is called Hermitian if A‡
x = Ax for every x ∈ M , i.e. if

A‡ = A (3.16)

and it is called unitary if A‡
x = A−1

x for every x ∈ M , i.e. if

A‡ = A−1. (3.17)

Using (3.14), we can establish the equivalence of (3.17) and

〈A · |A·〉x = 〈·|·〉x : Fx × Fx → C. (3.17′)
Consequently the unitary morphisms are fibre-metric compatible; i.e., they are isometric in a
sense that they preserve the fibre Hermitian scalar (inner) product.

Starting with the second part of this paper, we will need to deal with the differentiable
properties of the employed Hilbert bundle (F, π,M). To make this possible, we will require
the (total) bundle space F to be (at least) C1 manifold10. Besides, we shall need the paths in
M to have continuous tangent vectors; in our interpretation of M as a spacetime model, this
corresponds to the existence of velocities of the (point-like) particles and observers. To ensure
this natural requirement, we assume M to be a C1 differentiable manifold11. Moreover, we
shall need the point-trivializing isomorphisms lx to have a C1 dependence of x ∈ M , i.e. the
mapping l : F → F given by l : u �→ lπ(u)u for u ∈ F to be of class C1 as a map between
manifolds. A Hilbert bundle with the latter property will be called a C1 bundle (or bundle of
class C1).

Let us summarize the basic requirements for the bundle (F, π,M) that will be employed
in this paper: (i) it is a compatible Hilbert bundle; (ii) the bundle spaceF and the baseM areC1

differentiable manifolds; and (iii) it is of class C1 and the set {lx, x ∈ M} of point trivializing
(C1 isometric) isomorphisms is fixed12. The isomorphisms lx will frequently and explicitly be
used throughout this paper. The formalism of the theory is not invariant under their choice but
the corresponding transformation formulae are easily derivable and the physical predictions are
independent of them. For instance, if {mx} is another set of point-trivializing isomorphisms,
the scalar products 〈·|·〉lx and 〈·|·〉mx defined, respectively, by {lx} and {mx} are connected via the
equality 〈·|·〉lx = 〈ϕl,m · |ϕl,m·〉mx where the (fibre-preserving) bundle morphism ϕl,m : F → F

is given by ϕl,m|Fx
:= ϕl,m;x; = m−1

x ◦ lx : Fx → Fx . By means of the morphisms ϕl,m = ϕ−1
m,l

the formalism can be transformed from a particular choice of {lx} to any other one {mx}.
Running some steps ahead, we have to say that the set {lx} cannot be fixed on the basis of
conventional quantum mechanics; its particular choice is external to it. In this sense {lx} is
a free parameter in the bundle formulation of quantum mechanics. Regardless of this, as we
shall see, the predictions of the resulting theory are independent of the concrete choice of {lx}
and coincide with those of conventional quantum mechanics.
10 As the fibres Fx ⊂ F are, generally, infinite dimensional, the dimension of F is generically infinity. The theory of
such manifolds is given, for instance, in [50].
11 In most applications M is supposed to be of class C2 or C3 (e.g. the Riemannian manifold of general relativity) or
even C∞ (e.g. the Minkowski spacetime of special relativity or the Euclidean space of classical/quantum mechanics).
12 The last condition is equivalent on (F, π,M) to there being fixed a path-independent, of class C1, and isometric
linear transport along paths (vide infra section 3.2). From such a position, the formalism will be studied elsewhere.
Here we notice that the maps lx→y (see (3.13)) define such a transport: if γ : J → M and s, t ∈ J , by proposition 3.1
the map l : γ �→ lγ with lγ : (s, t) �→ lγ (s)→γ (t) = l−1

γ (t) ◦ lγ (s) is a linear transport in (F, π,M); it is obviously path

independent, of class C1, and isometric as lx are.
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3.2. Linear transports along paths

The general theory of linear transports along paths in vector bundles is developed at length
in [34, 35]. In the present investigation we shall need only a few definitions and results from
these papers when the bundle considered is a Hilbert one (vide supra definition 3.1). The
current section is devoted to their partial introduction and description.

Let (E, π, B) be a complex13 vector bundle (see section 3.1 or, for example, [9,53]) with
bundle (total) space E, base B, projection π : E → B and isomorphic fibres π−1(x) ⊂ E,
x ∈ B. Let E be the (standard, typical) fibre of the bundle, i.e. a vector space to which all
π−1(x), x ∈ B, are isomorphic. By J and γ : J → B we denote, respectively, a real interval
and path in B.

Definition 3.2. A linear transport along paths in the bundle (E, π, B) is a map L assigning
to any path γ : J → B a map Lγ , a transport along γ , such that Lγ : (s, t) �→ L

γ
s→t where

the map

L
γ
s→t : π−1(γ (s)) → π−1(γ (t)) s, t ∈ J (3.18)

called a transport along γ from s to t , has the properties

L
γ
s→t ◦ Lγ

r→s = L
γ
r→t r, s, t ∈ J (3.19)

Lγ
s→s = idπ−1(γ (s)) s ∈ J (3.20)

L
γ
s→t (λu + µv) = λL

γ
s→t u + µL

γ
s→t v λ, µ ∈ C u, v ∈ π−1(γ (s)) (3.21)

where ◦ denotes composition of maps and idX is the identity map of a set X.

Remark 3.1. Equations (3.19) and (3.20) mean that L is a transport along paths in the bundle
(E, π, B) [46, definition 2.1], while (3.21) specifies that it is linear [46, equation (2.8)]. In
the present paper only linear transports will be used.

This definition generalizes the concept of a parallel transport in the theory of (linear)
connections (see [46, 56] and references therein for details and comparison).

A few comments on definition 3.2 are now in order. According to equation (3.18), a
linear transport along paths may be considered as a path-dependent connection: it establishes
a fibre (isomorphic—see below) correspondence between the fibres over the path along which
it acts. By virtue of equation (3.21) this correspondence is linear. Such a condition is a natural
one when vector bundles are involved; it simply represents a compatibility condition with
the vectorial structure of the bundle (see [46, section 2.3] for details). Equation (3.20) is a
formal realization of our intuitive and naive understanding that if we ‘stand’ at some point of
a path without ‘moving’ along it, then ‘nothing’ should happen with the fibre over that point.
This property fixes a 0-ary operation in the set of (linear) transports along paths, defining in
it the ‘unit’ transport. Finally, the equality (3.19), which may be called a group property of
the (linear) transports along paths, is a rigorous expression of the intuitive representation that
the ‘composition’ of two (linear) transports along one and the same path must be a (linear)
transport along the same path.

In general, different forms of (3.18)–(3.21) are well known properties of the parallel
transports generated by (linear) connections (see [56]). For this reason these transports turn
out to be special cases of the general (linear) transport along paths [56, theorem 3.1]. In
particular, comparing definition 3.2 with [57, definition 2.1] and taking into account [57,
proposition 4.1], we conclude that special types of linear transport along paths are the parallel

13 All of our definitions and results also hold for real vector bundles. Most of them are valid for vector bundles over
more general fields too but this is inessential for the following.
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transport assigned to a linear connection (covariant differentiation) of the tensor algebra
of a manifold [58, 59], Fermi–Walker transport [60, 61], Fermi transport [61], Truesdell
transport [62, 63], Jaumann transport [64], Lie transport [59, 60], the modified Fermi–Walker
and Frenet–Serret transports [65] etc. Consequently definition 3.2 is general enough to cover
a list of important transports used in theoretical physics and mathematics. Thus studying the
properties of the linear transports along paths, we can draw corresponding conclusions for any
one of the transports mentioned14.

From (3.19) and (3.20), we obtain that Lγ
s→t are invertible and(

L
γ
s→t

)−1 = L
γ
t→s s, t ∈ J. (3.22)

Hence the linear transports along paths are in fact linear isomorphisms between the fibres over
the path along which they act.

The following two propositions establish the general structure of the linear transports
along paths.

Proposition 3.1. A map (3.18) is a linear transport along γ from s to t for every s, t ∈ J

iff there exists a vector space V isomorphic with π−1(x), x ∈ B and a family of linear
isomorphisms {F(s; γ ) : π−1(γ (s)) → V, s ∈ J } such that

L
γ
s→t = F−1(t; γ ) ◦ F(s; γ ) s, t ∈ J. (3.23)

Proof. If (3.18) is a linear transport along γ from s to t , then, fixing some s0 ∈ J and
using (3.20) and (3.22), we obtain L

γ
s→t = L

γ
s0→t ◦ L

γ
s→s0 = (

L
γ
t→s0

)−1 ◦ L
γ
s→s0 . So (3.23)

holds for V = π−1(γ (s0)) and F(s; γ ) = L
γ
s→s0 . Conversely, if (3.23) is valid for some

linear isomorphisms F(s; γ ), then a straightforward calculation shows that it converts (3.19)
and (3.20) into identities and (3.21) holds due to the linearity of F(s; γ ). �

Proposition 3.2. In a vector bundle (E, π, B), let there be given linear transport along paths
with a representation (3.23) for some vector space V and linear isomorphisms F(s; γ ) :
π−1(γ (s)) → V, s ∈ J . Then for a vector space +V there exist linear isomorphisms
+F (s; γ ) : π−1(γ (s)) → +V , s ∈ J for which

L
γ
s→t = +F−1(t; γ ) ◦ +F (s; γ ) s, t ∈ J (3.24)

iff there exists a linear isomorphism D(γ ) : V → +V such that
+F (s; γ ) = D(γ ) ◦ F(s; γ ) s ∈ J. (3.25)

Proof. If (3.25) holds, then the substitution of F(s; γ ) = D−1(γ )◦ +F (s; γ ) into (3.23) results
in (3.24). Vice versa, if (3.24) is valid, then from its comparison with (3.23) it follows that
D(γ ) = +F (t; γ ) ◦ (

F(t; γ ))−1 = +F (s; γ ) ◦ (
F(s; γ ))−1

is the required (independent of
s, t ∈ J ) isomorphism. �

Let (E, π, B) be a vector bundle whose bundle space E is a C1 differentiable manifold.
A linear transport Lγ along γ : J → B is called differentiable of class Ck , k = 0, 1, or
simply Ck transport, if for arbitrary s ∈ J and u ∈ π−1(γ (s)) the path γ s;u : J → E

with γ s;u(t) := L
γ
s→t u ∈ π−1(γ (t)), t ∈ J , is a Ck mapping in the bundle space15 E. If

a Ck linear transport has a representation (3.23), the mapping s �→ F(s; γ ) is of class Ck .
So, the transport Lγ is of class Ck iff Lγ

s→t has Ck dependence on s and t simultaneously.

14 The concept of linear transport along paths in vector bundles can be generalized to that of transports along paths
in arbitrary bundles [46] and to transports along maps in bundles [66]. An interesting consideration of the concept
of (parallel) ‘transport’ (along closed paths) in connection with homotopy theory and the classification problem of
bundles can be found in [67]. These generalizations will not be used in this paper.
15 If E is of class Cr with r = 0, 1, . . . ,∞, ω, we can define in an obvious way a Ck transport for every k � r .
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If {ei(·; γ )|i = 1, . . . , dim π−1(γ (s))} is a Ck frame along γ , i.e. {ei(s; γ )} is a basis in
π−1(γ (s)) and the mapping s �→ ei(s; γ ) is of class Ck for every i, Lγ is of class Ck iff its
matrix L(t, s; γ ) with respect to {ei(s; γ )}, s ∈ J has Ck dependence on s and t . Here the
elements of L(t, s; γ ) are defined via the expansion

L
γ
s→t

(
ei(s; γ )

) =: Lj

i(t, s; γ )ej (t; γ ) s, t ∈ J. (3.26)

A transport L along paths in (E, π, B), E being C1 manifold, is said to be of class Ck ,
k = 0, 1, if the corresponding transportLγ along γ is of classCk for everyC1 path γ : J → B.
Further we shall consider only C1 linear transports along paths whose matrices will be referred
to smooth frames along paths.

The above definition and results for linear transports along paths deal with the general
case concerning arbitrary vector bundles and are therefore insensitive to the dimensionality
of the bundle’s base or fibres. Below we point out some peculiarities of the case of a Hilbert
bundle whose fibres are generally infinite dimensional.

For linear transports in a Hilbert bundle all results of [34,35,46] are valid with a possible
exception of those in which (local) bases in the fibres are involved. The cause for this is that
the dimension of a Hilbert space is (generally) infinity, so there arise problems connected with
the convergence or divergence of the corresponding sums or integrals. Below we try to avoid
these problems and to formulate our assertions and results in an invariant way.

Of course, propositions 3.1 and 3.2 remain valid on Hilbert bundles; the only addition is
that the vector spaces V and +V are now Hilbert spaces.

In [34, section 3] are introduced the so-called normal frames for a linear transport along
paths as a (local) field of bases in which (on some set) the matrix of the transport is the unit
matrix. Further in this series [68], we shall see that the normal frames realize the Heisenberg
picture of motion in the Hilbert bundle formulation of quantum mechanics.

Now (see below the paragraph after equation (3.28)) we shall establish a result specific
for the Hilbert bundles that has no analogue in the general theory: a transport along paths
is Hermitian if it is unitary. This assertion is implicitly contained in [45, section 3] (see the
paragraph after equation (3.6)).

We call a (possibly linear) transport along paths in (F, π,M) Hermitian or unitary if it
satisfies, respectively, (3.11) or (3.12) in which x and y are replaced with arbitrary values of
the parameter of the transportation path, i.e. if respectively(

L
γ
s→t

)‡ = L
γ
s→t s, t ∈ J γ : J → M (3.27)(

L
γ
s→t

)‡ = (
L
γ
t→s

)−1
. (3.28)

A simple corollary from (3.22) is the equivalence of (3.27) and (3.28); therefore, a
transport along paths in a Hilbert bundle is Hermitian if it is unitary, i.e. these concepts
are equivalent. For such transports we say that they are consistent or compatible with the
Hermitian structure (metric (inner product)) of the Hilbert bundle [69]. Evidently, they are
isometric fibre maps along the paths where they act. Therefore, a transport along paths in a
Hilbert bundle is isometric iff it is Hermitian or iff it is unitary16.

3.3. Liftings of paths, sections and derivations along paths

A lifting17 (in a vector bundle (E, π, B)) of a map g : X → B, X being a set, is a
map g : X → E such that π ◦ g = g; in particular, the liftings of the identity map

16 The author thanks Professor James Stasheff (Math-UNC, Chapel Hill, NC, USA) for suggesting in July 1998 the
term ‘isometric transport’ in the context given.
17 For details see, for example, [55].
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idB of the base B are called sections and their set is Sec(E, π, B) := {σ |σ : B →
E, π ◦ σ = idB}. Let P(A) := {γ |γ : J → A} be the set of paths in a set A and
PLift(E, π, B) := {λ|λ : P(B) → P(E), (π ◦ λ)(γ ) = γ for γ ∈ P(B)} be the set of
liftings of paths from18 B to E. The set PLift(E, π, B) is (i) a natural C-vector space if we
put (aλ + bµ) : γ �→ aλγ + bµγ for a, b ∈ C, λ,µ ∈ PLift(E, π, B) and γ ∈ P(B), where,
for brevity, we write λγ for λ(γ ), λ : γ �→ λγ ; (ii) a natural left module with respect to
complex functions on B: if f, g : B → C, we define (f λ + gµ) : γ �→ (f λ)γ + (gµ)γ
with (f λ)γ (s) := f (γ (s))λγ (s) for γ : J → B and s ∈ J ; (iii) a left module with respect
to the set PF(B) := {ϕ|ϕ : γ �→ ϕγ , γ : J → B, ϕγ : J → C} of functions along
paths in the base B: for ϕ,ψ ∈ PF(B), we set (ϕλ + ψµ) : γ �→ (ϕλ)γ + (ψµ)γ where
(ϕλ)γ (s) := (ϕγ λγ )(s) := ϕγ (s)λγ (s).

The dimension of PLift(E, π, B) as a C-vector space is infinity but as a left PF(B)-module
is equal to that of (E, π, B) (i.e. of its fibres). In the last case a basis in PLift(E, π, B)

can be constructed as follows. For every γ : J → B and s ∈ J , choose a basis
{ei(s; γ )|i = 1, . . . , dim π−1(γ (s))} in π−1(γ (s)); if E is a C1 manifold, we suppose ei(s; γ )
to have a C1 dependence on s. Define ei ∈ PLift(E, π, B) by ei : γ �→ ei |γ := ei(·; γ ),
i.e. ei |γ : s �→ ei |γ (s) := ei(s; γ ). The set {ei} is a basis in PLift(E, π, B); i.e., for every
λ ∈ PLift(E, π, B) there are λi ∈ PF(B) such that λ = ∑

i λ
iei and {ei} are PF(B)-linearly

independent. Actually, for γ : J → B and s ∈ J , we have λγ (s) ∈ π−1(γ (s)), so there
exist numbers λiγ (s) ∈ C such that λγ (s) = ∑

i λ
i
γ (s)ei(s; γ ). Defining λi ∈ PF(B) by

λi : γ �→ λiγ with λiγ : s �→ λiγ (s), we obtain λ = ∑
i λ

iei ; if ei(·; γ ) is of class C1, so are λiγ .
The PF(B)-linear independence of {ei} is an evident corollary of the C-linear independence
of {ei(s; γ )}. As we notice above, if E is C1 manifold, we choose ei , i.e. ei |γ , to be C1 and,
consequently, the components λi , i.e. λiγ , are of class C1 too.

Let (E, π, B) be a vector bundle whose bundle space E is C1 manifold. A lifting
λ ∈ PLift(E, π, B) is said to be of class Ck , k = 0, 1, if in some (and hence in any) Ck

frame in PLift(E, π, B) its components are of class Ck along any Ck path, i.e. λ is of class Ck

if λγ is of class Ck for every Ck path γ . Analogously, ϕ ∈ PF(B) is of class Ck if ϕγ is of class
Ck for a Ck path γ . Denote by PLiftk(E, π, B), k = 0, 1, the set of Ck liftings of paths from
B to E and by PFk(B), k = 0, 1, the set of Ck functions along paths in B. If also the base B

is C1 manifold, we denote by Seck(E, π, B) the set of Ck sections of the bundle (E, π, B).

Definition 3.3. A derivation along paths in (E, π, B) or a derivation of liftings of paths in
(E, π, B) is a map

D : PLift1(E, π, B) → PLift0(E, π, B) (3.29a)

which is C-linear,

D(aλ + bµ) = aD(λ) + bD(µ) (3.30a)

for a, b ∈ C and λ,µ ∈ PLift1(E, π, B), and the mapping

Dγ
s : PLift1(E, π, B) → π−1(γ (s)) (3.29b)

defined via D
γ
s (λ) := (

(D(λ))(γ )
)
(s) = (Dλ)γ (s) and called derivation along γ : J → B

at s ∈ J , satisfies the ‘Leibnitz rule’:

Dγ
s (f λ) = dfγ (s)

ds
λγ (s) + fγ (s)D

γ
s (λ) (3.30b)

18 Every linear transport L along paths provides a lifting of paths: for every γ : J → B fix some s ∈ J and
u ∈ π−1(γ (s)), the mapping γ �→ γ s;u with γ s;u(t) := L

γ
s→t u, t ∈ J is a lifting of paths from B to E.
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for every f ∈ PF1(B). The mapping

Dγ : PLift1(E, π, B) → P
(
π−1(γ (J ))

)
(3.29c)

defined by Dγ (λ) := (D(λ))|γ = (Dλ)γ is called derivation along γ .

Before continuing with the study of linear transports along paths, we want to say a few
words on the links between sections (along paths) and liftings of paths.

The set PSec(E, π, B) of sections along paths of (E, π, B) consists of mappings
σ : γ �→ σγ assigning to every path γ : J → B a section σγ ∈ Sec

(
(E, π, B)|γ (J )

)
of

the bundle restricted on γ (J ). Every (ordinary) section σ ∈ Sec(E, π, B) generates a section
σ along paths via σ : γ �→ σγ := σ |γ (J ), i.e. σγ is simply the restriction of σ on γ (J );
hence σα = σγ for every path α : Jα → B with α(Jα) = γ (J ). Every σ ∈ PSec(E, π, B)

generates a lifting σ̂ ∈ PLift(E, π, B) by σ̂ : γ �→ σ̂γ := σγ ◦ γ ; in particular, the lifting σ̂

associated with σ ∈ Sec(E, π, B) is given via σ̂ : γ �→ σ̂γ = σ |γ (J ) ◦ γ .
Every derivation D along paths generates a map

D : PSec1(E, π, B) → PLift0(E, π, B)

which may be called a derivation of C1 sections along paths, such that if σ ∈ PSec1(E,π,B),
then D : σ �→ Dσ = D(σ), where Dσ : γ �→ D

γ
σ is a lifting of paths defined

by D
γ
σ : s �→ (D

γ
σ)(s) := D

γ
s σ̂ with σ̂ being the lifting generated by σ; i.e.,

γ �→ σ̂γ := σγ ◦γ . Notice that ifγ : J → B has self-intersection points andx0 ∈ γ (J ) is such
a point, the map γ (J ) → π−1(γ (J )) given by x �→ {Dγ

s (σ̂)|γ (s) = x, s ∈ J }, x ∈ γ (J ), is
generally multiple valued at x0 and, consequently, it is not a section of (E, π, B)|γ (J ).

If B is a C1 manifold and for some γ : J → B there exists a subinterval J ′ ⊆ J on which
the restricted path γ |J : J ′ → B is without self-intersections, i.e. γ (s) �= γ (t) for s, t ∈ J ′

and s �= t , we can define the derivation along γ of sections over γ (J ′) as a map

Dγ : Sec1
(
(E, π, B)|γ (J ′)

) → Sec0
(
(E, π, B)|γ (J ′)

)
(3.31)

such that

(Dγ σ )(x) := Dγ
s σ̂ for x = γ (s) (3.32)

where s ∈ J ′ is unique for a given x and σ̂ ∈ PLift
(
(E, π, B)|γ (J ′)

)
is given by σ̂ =

σ |γ (J ′) ◦ γ |J ′ . Generally the map (3.31) defined by (3.32) is multiple valued at the points
of self-intersection of γ , if any, as (Dγ σ )(x) := {Dγ

s σ̂ : s ∈ J, γ (s) = x}. The so-defined
map D : γ �→ Dγ is called section derivation along paths. As we said, it is single valued only
along paths without self-intersections.

Generally a section along paths or lifting of paths does not define a (single-value) section of
the bundle as well as there not corresponding to a lifting along paths some (single-value) section
along paths. The last case admits one important special exception: if a lifting λ is such that
the lifted path λγ is an ‘exact topological copy’ of the underlying path γ : J → B, i.e. if there
exist s, t ∈ J , s �= t , for which γ (s) = γ (t), then λγ (s) = λγ (t). Such a lifting λ generates
a section λ ∈ PSec(E, π, B) along paths given by λ : γ �→ λγ with λ : γ (s) �→ λγ (s). In
the general case, the mapping γ (s) �→ λγ (s) for a lifting λ of paths is multiple valued at the
points of self-intersection of γ : J → B, if any; for injective path γ this map is a section of
(E, π, B)|γ (J ). Such mappings will be called multiple-valued sections along paths.

With every derivation D along paths in (E, π, B) can be associated a derivation D̃ along
paths in morB(E, π, B). To this end every lifting PLift(mor(E, π, B)) should be regarded as
a map

A : PLift(E, π, B) → PLift(E, π, B) (3.33)
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such that, if λ ∈ PLift(E, π, B), γ : J → B and s ∈ J , then

A : λ �→ A(λ) : γ �→ (A(λ))γ := Aγ (λγ ) Aγ (λγ ) : s �→ Aγ (s)(λγ (s)). (3.34)

For every derivation D along paths in (E, π, B), we define

D̃ : PLift1(morB(E, π, B)) → PLift0(morB(E, π, B)) (3.35)

by

D̃ : A �→ D̃(A) := D ◦ A (3.36)

where in the rhs of the last equality A ∈ PLift1(morB(E, π, B)) is considered as a map (3.33)
given by (3.34). Putting

D̃γ (A) := Dγ ◦ A D̃γ
s (A) := Dγ

s ◦ A (3.37)

it is a trivial verification to show that the map D̃ is a derivation along paths in morB(E, π, B).
The map D̃ will be called induced (from D) derivation along paths.

Definition 3.4. The derivation D along paths generated by a C1 linear transport L along
paths is a map of type (3.29a) assigning to every path γ : J → B a map Dγ , derivation along
γ generated by L, such that Dγ : s �→ D

γ
s , s ∈ J , is a map (3.29b), called derivation along

γ at s assigned to L, given via

Dγ
s (λ) := lim

ε→0

{
1

ε

[
L
γ
s+ε→sλγ (s + ε) − λγ (s)

]}
(3.38)

for every lifting λ ∈ PLift1(E, π, B) with λ : γ �→ λγ .

Remark 3.2. The operator Dγ
s is an analogue of the covariant differentiation assigned to a

linear connection; cf, for example, [70, p 139, equation (12)].

Remark 3.3. Notice that if γ has self-intersections and x0 ∈ γ (J ) is such a point, the mapping
x �→ π−1(x), x ∈ γ (J ) given by x �→ {Dγ

s (λ)|γ (s) = x, s ∈ J } is, generally, multiple valued
at x0.

Let L be a linear transport along paths in (E, π, B). For every path γ : J → B choose
some s0 ∈ J and u0 ∈ π−1(γ (s0)). The mapping

L : γ �→ L
γ

s0,u0
L
γ

s0,u0
: J → E L

γ

s0,u0
: t �→ L

γ

s0,u0
(t) := L

γ
s0→t u0 (3.39)

is, evidently, a lifting of paths.

Definition 3.5. The lifting of paths L from B to E in (E, π, B) defined via (3.39) is called the
lifting (of paths) generated by the (linear) transport L.

Equations (3.20) and (3.23), combined with (3.38), immediately imply

D
γ
t (L) ≡ 0 t ∈ J (3.40)

Dγ
s (aλ + bµ) = aDγ

s λ + bDγ
s µ a, b ∈ C λ,µ ∈ PLift1(E, π, B) (3.41)

where s0 ∈ J and u(s) = L
γ
s0→su0 are fixed. In other words, equation (3.40) means that the

lifting L is constant along every path γ with respect to D.
Let {ei(s; γ )} be a field of smooth bases along γ : J → B, s ∈ J . Combining the

linearity of L with (3.26) and (3.38), we find the explicit local action of19 D
γ
s :

Dγ
s λ =

∑
i

[
dλiγ (s)

ds
+ 7i

j (s; γ )λjγ (s)
]
ei(s; γ ). (3.42)

19 Here and below we suppose the existence of derivatives such as dλiγ (s)/ds, namely λiγ : J → C, to be a C1

mapping. This, of course, imposes some smoothness conditions on γ which we assume to hold. Evidently, for the
purpose γ must be at least continuous. Without going into details, we notice that the most natural requirement for γ ,
when B is a manifold, is to admit it to be a C1 map.
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Here the (two-index) coefficients 7i
j of the linear transport L are defined by

7i
j (s; γ ) := ∂Li

j (s, t; γ )
∂t

∣∣∣∣
t=s

= −∂Li
j (s, t; γ )
∂s

∣∣∣∣
t=s

(3.43)

and, evidently, uniquely determine the generated by L derivation D along paths.
A trivial corollary of (3.41) and (3.42) is the assertion that the derivation along paths

generated by a linear transport is actually a derivation along paths (see definition 3.3).
If the transport matrix L has a representation

L(t, s; γ ) = F −1(t; γ )F (s; γ ) (3.44)

for some nondegenerate matrix-valued function F , which is a corollary of (3.23), from (3.43),
we obtain

Γ(s; γ ) := [
7i

j (s; γ )
] = ∂L(s, t; γ )

∂t

∣∣∣∣
t=s

= F −1(s; γ )dF (s; γ )
ds

. (3.45)

From here and (3.43), we see that the change {ei} → {e′
i = ∑

j A
j

i ej } of the local bases along

γ with a nondegenerate C1 matrix A := [
A

j

i

]
implies

Γ(s; γ ) = [
7i

j (s; γ )
] �→ Γ′(s; γ ) = [

7′ i
j (s; γ )

]
with

Γ′(s; γ ) = A−1(s; γ )Γ(s; γ )A(s; γ ) + A−1(s; γ )dA (s; γ )
ds

. (3.46)

It is a fundamental result [34,35] that there exists a bijective correspondence between linear
transports along paths and derivations along paths: a linear transport generates derivation
via (3.38) and, vice versa, for every derivation along paths there exists a unique transport
generating it by (3.38). Locally this correspondence is established by the coincidence of the
transport and derivation coefficients20.

Every transport L along paths in a vector bundle (E, π, B) generates a linear transport ◦L
along paths in the bundle morB(E, π, B) of point-restricted morphisms over B in (E, π, B).
If γ : J → B, explicitly we have [69, equations (3.9)–(3.12)] ◦L : γ �→ ◦Lγ : (s, t) �→ ◦Lγ

s→t

s, t ∈ J with
◦Lγ

s→t (ϕγ (s)) := L
γ
s→t ◦ ϕγ (s) ◦ L

γ
t→s ∈ (πB

0 )−1(γ (t)) = {ψ |ψ : π−1(γ (t)) → π−1(γ (t))}
(3.47)

for every ϕγ (s) : π−1(γ (s)) → π−1(γ (s)). The transport ◦L will be described as associated
with L (in morB(E, π, B)).

The derivation generated by ◦L along paths in morB(E, π, B) will be denoted by ◦D
and called the derivation associated with the derivation D generated by L. Therefore, if
A ∈ PLift1(morB(E, π, B)), then

◦Dγ
s (A) := lim

ε→0

{
1

ε

[◦Lγ
s+ε→sAγ (s + ε) − Aγ (s)

]}
. (3.48)

If the lifting Aγ of γ : J → B in the bundle space EB
0 of morB(E, π, B) is linear and the

matrix of Aγ in {ei(s; γ )} is Aγ (s), then from (3.42)–(3.45) one finds the explicit matrix of
◦Dγ

s A as

[[[◦Dγ
s A]]] = [Γ(s; γ ),Aγ (s)]− +

dAγ (s)

ds
(3.49)

20 The coefficients (components) of derivation D along paths are defined by D
γ
s êi = ∑

j 7
j

i (s; γ )ej (s; γ ), where
ê : γ �→ e(·; γ ) : s �→ e(s; γ ).
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where [·, ·]− means the commutator of matrices and the equality L(s, s; γ ) = 1I, 1I being the
unit matrix, was used (see (3.44) or (3.20)).

Under some assumptions, the matrix of the induced derivative (D̃
γ
s A)λ = D

γ
s (A(λ)) is

(see (3.37) and (3.42))

[[[(D̃γ
s A)λ]]] = dAγ (s)

ds
λγ (s) + Aγ (s)

dλγ (s)

ds
+ Γ(s; γ )Aγ (s)λγ (s) (3.50)

where λ ∈ PLift1(E, π, B) is a C1 lifting along paths in (E, π, B) and λγ (s) is the matrix of
λγ (s) in {ei(s; γ )}.

In our investigation the above-presented general definitions and results will be applied
to the particular case of a Hilbert bundle. Since its dimension is generically infinite,
some problems connected with convergence of sums (which generally are integrals) or
decompositions such as

∑
i λ

iei could arise. We shall comment on these problems in the
second part of the paper.

4. The Hilbert bundle description of quantum mechanics

As we shall see in this investigation, the Hilbert bundles provide a natural mathematical
framework for a geometrical formulation of quantum mechanics. In it all quantum mechanical
quantities, such as Hamiltonians, observables and wavefunctions, have an adequate description.
For instance, the evolution of a systems is described as an appropriate (parallel or, more
precisely, linear) transport of the system’s state liftings of paths or sections along paths. We
have to emphasize on the fact that the new bundle formulation of quantum mechanics and the
conventional one are completely equivalent at the present stage of the theory.

4.1. Brief literature overview

Several attempts have been made for a (partial) (re-) formulation of nonrelativistic quantum
mechanics in terms of bundles. Works containing such material were mentioned in section 1.
Below are marked only those which directly or indirectly lead to some essential elements of
our approach to quantum mechanics.

It seems that an appropriate bundle approach to quantum mechanics was developed for
the first time in [38], where the single Hilbert space of quantum mechanics is replaced with
infinitely many copies of it forming a bundle space over the one-dimensional ‘time’ manifold
(i.e. over R+). In this Hilbert fibre bundle the quantum evolution is (equivalently) described as
a kind of ‘parallel’ transport of suitable objects over the bundle’s base. A similar treatment of
the quantum evolution as a parallel transport in a Hilbert bundle over time (manifold) is stated
in [43].

Analogous construction, a Hilbert bundle over the system’s phase space, is used in
Prugovečki’s approach to quantum theory (see e.g. the references in [32]).

The gauge, i.e. linear connection, structure in quantum mechanics is first mentioned in [19].
That structure is pointed out to be connected with the system’s Hamiltonian. This observation
will find a natural explanation in our work (see [71]).

Some ideas concerning the interpretation of quantum evolution as a kind of a ‘parallel’
transport in a Hilbert bundle can also be found in [36, 39].

4.2. Motivation

Below are presented some nonexactly rigorous ideas and statements whose only purpose is the
motivation for applying the fibre bundle formalism to quantum mechanics. Other excellent
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arguments and motives confirming this approach are given in [38, 43, 44], to which papers
the reader is referred for details. Arguments in favour of the bundle approach to quantum
mechanics will be also obtained a posteriori after its consistent development.

Let M be a differentiable manifold, representing in our context the space in which the
(nonrelativistic) quantum mechanical objects ‘live’, i.e. the usual three-dimensional coordinate
space (isomorphic to R

3 with the corresponding structures)21. Let γ : J → M , J being an
R-interval, be the trajectory of an observer describing the behaviour of a quantum system at any
moment t ∈ J by a state vector "γ (t) depending on t and, possibly, on22 γ . For a fixed point
x = γ (t) ∈ M the variety of state vectors describing a quantum system and corresponding to
different observers form a Hilbert space Fγ(t) which depends on γ (t) = x, but not on γ and t

separately23.

Remark 4.1. As we said above in footnote 21, the next considerations are completely valid
mathematically if M is an arbitrary differentiable manifold and γ is a path in it. In this sense
M and γ are free parameters in our theory and their concrete choice is subject only to physical
constraints, first of all, ones requiring adequate physical interpretation of the resulting theory.
(The arbitrariness of M in a similar construction is mentioned in [39, section I] too.) Typical
candidates for M are the three-dimensional Euclidean space E

3, R
3, the four-dimensional

Minkowski space M4 of special relativity or the Riemannian space V4 of general relativity, the
system’s configuration or phase space, the ‘time’ manifold R+ := {a : a ∈ R, a > 0} etc.
Correspondingly, γ obtains interpretation as a particle’s trajectory, its world line and so on.
The degenerate case when M consists of a single point corresponds (up to an isomorphism—
see below) to the conventional quantum mechanics. Throughout this paper, we most often
take M = R

3 as a natural choice corresponding to the nonrelativistic case investigated here,
but, as we said, this is not required by necessity. Elsewhere we shall see that M = M4 or V4

are natural choices in the relativistic region. An expanded comment on these problems will be
given in the concluding part of this series. Here we want only to note that the interpretation of
γ as an observer’s (particle’s) trajectory or world line, as accepted in this paper, is a reasonable
but not necessary one. Maybe a more adequate one is to interpret γ as a mean (in the quantum
mechanical sense) trajectory of some point particle, but this does not change anything in the
mathematical structure of the bundle approach proposed here.

The spaces Fγ(t) must be isomorphic as, from a physical viewpoint, they simply represent
the possible variety of state vectors from different positions. In this way over M there arises a
natural bundle structure, namely a Hilbert bundle (F, π,M) with a total space F , projection
π : F → M and isomorphic fibres π−1(x) := Fx . Since Fx , x ∈ M , are isomorphic, there
exists a Hilbert space F and (linear) isomorphisms lx : Fx → F, x ∈ M . Mathematically F is
the typical (standard) fibre of (F, π,M). The maps "γ : J → π−1(γ (J )) can be considered
as sections over any part of γ without self-intersections (see below).

Here are other similar arguments leading to the same Hilbert bundle (F, π,M)with fibre F .
SupposeM = E

3 is the three-dimensional Euclidean space (-time) model of classical/quantum
mechanics as above. Let O and O′ be two observers in E

3 connected via special Galilean

21 In the following M can naturally be considered also as the Minkowski spacetime of special relativity. In this case
the below-defined observer’s trajectory γ is his world line. However, we avoid this interpretation because only the
nonrelativistic case is investigated here. It is important to note that mathematically all of what follows is valid in the
case when by M is understood an arbitrary differentiable manifold. The physical interpretation of these cases will be
given elsewhere.
22 In this way we introduce the (possible) explicit dependence of the description of system’s state on the concrete
observer with respect to which it is determined.
23 If there exists a global time, as in the nonrelativistic quantum mechanics, the parameter t ∈ J can be taken as such.
Otherwise by t we have to understand the local (‘proper’ or ‘eigen-’) time of a concrete observer.
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transformation with parameter �v, i.e. O′ moves with constant velocity �v with respect to O.
This implies that the radius vectors �r and �r ′ of an arbitrary point in E

3 with respect to O
and O′ are related by �r ′ = �r − �vt , where t ∈ R is the (absolute Newtonian) time. It is
known [72–74] that the Schrödinger equation is not invariant under the (special) Galilean group
in the following sense. If ψ(�r, t) is the wavefunction of a system with respect to O, then the
Galilean transformation (�r, t) �→ (�r ′ = �r−�vt, t ′ = t) implies the changeψ(�r, t) �→ ψ ′(�r ′, t ′),
where the new vector ψ ′(�r ′, t ′) belongs to the same Hilbert space as ψ(�r, t) but it does not
satisfy the Schrödinger equation corresponding to the appropriately changed Hamiltonian24.
However, one can revert the situation: if "(�r ′, t ′) is the wavefunction of the same system
relative to O′, the inverse Galilei transformation (�r ′, t ′) �→ (�r = �r ′ + �vt ′, t = t ′) leads to a
vector ϕ(�r, t) which is not a solution of the Schrödinger equation with respect to O. Since
ψ(�r, t) and "(�r ′, t ′) are the wavefunctions of one and the same system (relative to O and O′

respectively), they should be uniquely expressible through each other. This implies that if F
and Ft are the Hilbert spaces of the system’s states with respect to O and O′ respectively25,
they must be isomorphic. Therefore along the path �γ : t �→ �γ (t) := �vt ∈ E

3 (with respect
to O) there arises a family {Ft : t ∈ E} of isomorphic Hilbert space such that Ft |t=0 = F is
the system’s Hilbert space relative to O. Since the vector �v (i.e. the observer O′) is completely
arbitrary, from here it follows that to every point x ∈ E

3 is assigned a Hilbert space Fx which
is isomorphic to F . In this way over M = E

3 there arises a Hilbert bundle (F, π,M) with
bundle space F = ∪x∈MFx , projection π : F → M with π−1(x) := Fx for all x ∈ M

and standard fibre F , which is the system’s Hilbert space with respect to the initial observer
O. As Fx and F are isomorphic for any x ∈ M , there are isomorphisms lx : F → F . In
particular, for x = �γ (t) = �vt the isomorphism l�vt : F�vt → F realizes the correspondence
"(�r ′, t ′) �→ ψ(�r, t) between the wavefunctions of the considered system with respect to the
observers O and O′ connected via a special Galilei transformation. Summarizing the above,
we can say that the Galilei invariance (of the classical space (-time) model) naturally leads to
a Hilbert bundle description of the solutions of the Schrödinger equation. Such a description
reflects the Galilean invariance in a sense that, given the wavefunction ψ(�r, t) ∈ F0 = F
of a system with respect to some observer O, one can immediately obtain the wavefunction
"(�r ′, t ′) ∈ Ft of the same system with respect to any observer O′ moving relative to O with
constant velocity �v by means of the isomorphisms lx , x ∈ M .

Now a natural question arises: how is the quantum evolution in time in the bundle
constructed described? There are two almost ‘evident’ ways to do this. On one hand, we can
postulate the conventional quantum mechanics in every fibre Fx , i.e. the Schrödinger equation
for the state vector "γ (t) ∈ Fγ(t) with Fγ(t) being (an isomorphic copy of) the system’s Hilbert
space, but the only thing one obtains in this way is an isomorphic image of the usual quantum
mechanics in any fibre over M . Therefore, one cannot expect new results or descriptions in
this direction (see below (4.2) and the comments after it). On the other hand, we can demand
the ordinary quantum mechanics to be valid in the fibre F of the bundle (F, π,M). This
means identifying F with the system’s Hilbert space of states and describing the quantum time
evolution of the system via the vector

ψ(t) = lγ (t)("γ (t)) ∈ F (4.1)

which evolves according to (2.1) or (2.6). This approach is accepted in the present investigation.
What we intend to do further, is, by using the basic relation (4.1), to ‘transfer’ the quantum

24 For the explicit form of ψ ′(�r ′, t ′), see [5, the exercise to section 17]. For representations of the Galilei group
preserving the solutions of the Schrödinger equation, see [73] where it is also explicitly proved that ψ and ψ ′ cannot
satisfy the Schrödinger equation simultaneously.
25 Since O′ depends on t , we write Ft instead of F ′.



Bundle quantum mechanics: I 4907

mechanics from F to (F, π,M) or, in other words, to investigate the quantum evolution in terms
of the vector "γ (t) connected with ψ(t) via (4.1). Since lx, x ∈ M are isomorphisms, both
descriptions are completely equivalent. This equivalence resolves a psychological problem
that may arise prima facie: the single Hilbert space F of standard quantum theory [1–5] is
replaced with, generally, an infinite number of copies Fx , x ∈ M , thereof (cf [38]). In the
present investigation we shall show that the merit one gains from this is an entirely geometrical
reformulation of quantum mechanics in terms of Hilbert fibre bundles.

The evolution of a quantum system will be described in a fibre bundle (F, π,M) with
fixed isomorphisms {lx, x ∈ M} such that lx : Fx → F , where F is the Hilbert space in which
the system’s evolution is described through the usual Schrödinger picture of motion.

In the Schrödinger picture a quantum system is described by a state vector ψ in F .
Generally [47] ψ depends (maybe implicitly) on the observer with respect to which the
evolution is studied26 and it satisfies the Schrödinger equation (2.6). We shall refer to
this representation of quantum mechanics as a Hilbert space description. In the new
(Hilbert fibre) bundle description, which will be studied below, the linear isomorphisms
lx : Fx = π−1(x) → F, x ∈ M are supposed to be arbitrarily fixed27 and the quantum systems
are described by state liftings of paths or sections along paths " of a bundle (F, π,M) whose
typical fibre is the Hilbert space F (the same Hilbert space as in the Hilbert space description).

Generally, to any vector ϕ ∈ F there corresponds a unique (global) section ! ∈
Sec(F, π,M) defined via

! : x �→ !x := l−1
x (ϕ) ∈ Fx x ∈ M ϕ ∈ F . (4.2)

Consequently to a state vector ψ(t) ∈ F one can assign the (global) section "(t), "(t) : x �→
"x(t) = l−1

x (ψ(t)) ∈ Fx and thus obtain in Fx for every x ∈ M an isomorphic picture of (the
evolution in) F , but in this way one cannot expect significantly new results as the evolution
in F is simply replaced with the evolution (linearly isomorphic to it) in Fx for every arbitrary
fixed28 x ∈ M . This reflects the fact that the quantum mechanical description is defined up to
linear isomorphism(s) (see note 4.4 below). Additionally, in contrast to the bundle description,
in this way one loses the explicit dependence on the observer, so in it one cannot obtain really
new results with respect to the Hilbert space description.

4.3. Basic ideas and statement of the problems

Taking into account the (more or less heuristic) arguments from the previous subsection, we
pose the following problem: given a Hilbert bundle (F, π,M) with the properties described in
section 3.1 and a path γ : J → M , describe the quantum evolution of some quantum system
in this bundle provided the standard fibre F is the system’s Hilbert space of states. For the
moment, we identify the bundle’s base M with the spacetime model used: for definiteness we
take for it the three-dimensional Euclidean space E

3. The path mentioned will be interpreted
as a trajectory of a certain observer; correspondingly its parameter will be treated as a (global)
time.

At precisely this point some natural questions arise. First of all, why should one replace
the single conventional Hilbert space of the system with a Hilbert bundle, i.e. with a (generally)
infinite number of different ‘local’ Hilbert spaces, each of which is associated with a single
space point? Moreover, why is the introduced reference path required? These are basic

26 Usually this dependence is not written explicitly, but it is always present as actually t is the time with respect to a
given observer.
27 The particular choice of {lx} (and, consequently, of the fibres Fx ) is inessential for our investigation.
28 The machinery of global sections such as (4.2) is used in [39] for the bundle approach to quantum mechanics
contained in this paper.
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moments which a posteriori will be justified by the results but a priori their essence is in the
following. Conventionally, the system’s evolution is described by different state vectors, one for
every instant of time, in the unique Hilbert space of the system. These state vectors generically
depend on the observer with respect to which the system is explored. This dependence is often
an implicit one in quantum mechanics but it is always present: the states might be different
because, for example, the observers could have different velocities, or be rotated relative to
each other. So, different observers assign, generally, different state vectors to one and the same
quantum system at a given moment and these vectors belong to the (initial) Hilbert space of
the system. In this context the shift to a Hilbert bundle pursues a twofold goal: the explicit
observer dependence of the ‘state vectors’29 and the split of the time values of the ‘state vectors’
into different Hilbert spaces. We achieve this by describing the system’s state at a time t ∈ J

with respect to the observer with trajectory γ : J → M with a ‘state vector’ from the ‘local’
Hilbert space attached to the point γ (t), i.e. from the fibre Fγ(s) := π−1(γ (s)). Besides,
through γ , the observer dependence of the ‘state vectors’ is introduced, maybe implicitly,
via the Hamiltonian, which does not exists per se but is always given with respect to some
concrete observer. Consequently, if we have two observers with trajectories α : Jα → M and
β : Jβ → M with Jα∩Jβ �= ∅, at a moment t ∈ Jα∩Jβ they will describe the state of a system
via some vectors "α ∈ Fα(t) and "β ∈ Fβ(t). In particular, if it happens that at the moment t
the observers are at one and the same point x = α(t) = β(t), the ‘state vectors’ "α and "β

will be from a single fibre, that over x, i.e. the Hilbert space Fx = π−1(x), but generally these
vectors will be different unless the observers are absolutely identical at the moment30 t .

At the moment it is not clear what one gains from ‘unwrapping’ the time evolution from
the single Hilbert space F to a collection {Fγ(t)|t ∈ J } of ‘local’ Hilbert spaces along the
observer’s trajectory γ . We shall try to explain this in section 4.4. In advance, we want only to
state the main merit of the proposed approach: a self-consistent purely geometrical formulation
of (non-) relativistic quantum mechanics in terms of Hilbert bundles.

Now it is time for explicit rigorous statement of the basic assertions and the problems we
are going to solve later in this investigation. Note that if the opposite is not explicitly stated,
we consider only pure quantum states that conventionally are described by vectors in a Hilbert
space.

Postulate 4.1. Let there be given a quantum system and let F be its Hilbert space of states.
To this system we assign a C1 compatible Hilbert bundle (F, π,M) with bundle space F ,
projection π : F → M and base M . In addition, we suppose:

(i) The base M and the bundle space F are C1 differentiable manifolds.
(ii) The point-trivializing (isometric) isomorphisms lx : π−1(x) → F , x ∈ M , are fixed and

of class C1. Their dependence on x is also required to be of class C1, i.e. (F, π,M) is of
class C1.

(iii) The (standard) fibre of (F, π,M) is the system’s Hilbert space of states F in which the
conventional quantum mechanics is valid.

Note 4.1. It should be emphasized that here we introduce two parameters which are left free
from the quantum mechanics and are external to it: the base M and the set of isomorphisms
{lx}. For the sake of physical interpretation (see remark 4.1), we identify M with the space
(-time) model, in particular with the three-dimensional Euclidean space E

3 (or the Minkowski

29 Here we use inverted commas as, actually, the right term is bundle state vector, i.e. a state lifting or section at some
point; vide infra in this section.
30 For example, if the observers have nonzero relative acceleration at x, it is quite natural that they will assign different
‘state vectors’ to the system at the moment t .
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four-dimensional spacetime M4, or the Riemannian four-manifold V4 of general relativity etc).
This does not influence the basic scheme which is valid for arbitrary manifold M . As concerns
the set {lx}, in this paper we consider it as given and its analysis and interpretation will be
given elsewhere. In this connection, we want to note three things: (i) the arbitrariness in {lx}
reflects the natural one in the choice of the system’s Hilbert space of states which is defined
up to isomorphism; (ii) as we shall see, the mathematical formalism depends on the choice
of {lx} but the physically predictable results (the mean values (mathematical expectations) of
the operators) do not; (iii) in another investigation we intend to show that on the basis of the
set {lx} of isomorphisms there is very likely to be achieved a kind of unification of quantum
mechanics and gravity.

Definition 4.1. The bundle (F, π,M) introduced via postulate 4.1 will be called the Hilbert
bundle (of states) of the quantum system, or simply the system’s Hilbert bundle (of states).

Postulate 4.2. Let J ⊆ R be the real interval representing the period of time in which a
quantum system is investigated, (F, π,M) be its Hilbert bundle and γ : J → M be a C1 path
in the base M . In (F, π,M) the state of the system at a moment t ∈ J is described by a map
" assigning to a pair (γ, t) a vector "γ (t) ∈ π−1(γ (t)) = Fγ(t) such that

"γ (t) = l−1
γ (t)(ψ(t)) ∈ Fγ(t) (4.3)

where ψ(t) ∈ F is the conventional state vector in the system’s Hilbert space of states (≡ the
bundle’s fibre) describing the system’s state at the moment t in the (usual) quantum mechanics.

Definition 4.2. The description of a quantum system via the map " (ψ) in the Hilbert bundle
(F, π,M) (Hilbert space F) will be called the Hilbert bundle (Hilbert space) description (of
the quantum mechanics of the system).

Note 4.2. Since the maps lx : F → F are isomorphisms, the description of quantum states by
" and ψ is completely equivalent.

Note 4.3. As we said above, the path γ will be physically interpreted as a trajectory (or,
possibly, world line) of an observer moving in M and with respect to which the quantum
system is studied (or ‘who’ investigates it). So, in the bundle description the ‘state vector’
"γ (t), representing the system state at a moment t , explicitly depends on the observer which
is depicted in the index γ in "γ (t). This is contrary to the conventional quantum mechanics,
where this dependence is implicitly assumed almost everywhere. Thus we come to the above-
mentioned situation: different observers describe the system’s state at a fixed moment by
vectors from, generally, different fibres of the bundle; these vectors belong to one and the
same fibre over some point in M iff the observers happen to be simultaneously in it but, even
in this case, the vectors need not to coincide, they are generically different unless the observers
are absolutely identical.

Note 4.4. The bundle, as well as the conventional, description of quantum mechanics is defined
up to linear isomorphism(s). In fact, if ı : F → F ′, F ′ being a Hilbert space, is a linear
isomorphism (which may depend on the time t), then ψ ′(t) = ı(ψ(t)) equivalently describes
the evolution of the quantum system in F ′. (Note that in this way, for F ′ = F , one can
obtain the known pictures of motion in quantum mechanics—see [3].) In the bundle case the
shift from F to F ′ is described by the transformation lx → l′x := ı ◦ lx , which reflects the
arbitrariness in the choice of the typical fibre (now F ′ instead of F) of (F, π,M). There is
also arbitrariness in the choice of the fibres Fx = π−1(x), which is of the same character as
that in the case of F ; namely, if ıx : Fx → F ′

x, x ∈ M are linear isomorphisms, then the fibre
bundle (F ′, π ′,M) with F ′ := ⋃

x∈M F ′
x, π

′|F ′
x

:= π ◦ ı−1
x , typical fibre F , and isomorphisms
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l′x := lx ◦ ı−1
x can equivalently be used to describe the state of a quantum system. In the

most general case, we have a fibre bundle (F ′, π ′,M) with fibres F ′
x = ı−1

x (Fx), typical fibre
F ′ = ı(F) and isomorphisms l′x := ı ◦ lx ◦ ı−1

x : F ′
x → F ′. Further we will not be interested

in such generalizations. Thus, we shall suppose that all of the mentioned isomorphisms are
fixed.

Let us now look at the mathematical nature of the map " introduce via postulate 4.2.
On one hand, as the notation suggests, the mapping " : γ �→ "γ with "γ : t �→ "γ (t)

is a lifting of paths, " ∈ PLift(F, π,M), which is a trivial corollary of (4.3). On the
other hand, we can consider " as a multiple-valued section along paths; to this end one
has to put " : γ �→ γ", γ : J → M , with γ" : x �→ {"γ (t)|γ (t) = x, t ∈ J } for
x ∈ γ (J ). If one employs multiple-valued sections along paths, the basic problem is how
exactly the values corresponding to some ‘time’ value t are chosen and how the transition
between different ‘time’ values is depicted; of course, this problem arises at the points of self-
intersection of γ , if any. Mathematically the work with multiple-valued maps is considerably
more difficult than the treatment of single-valued ones. The correct rigorous treatment of " as
a section requires additional rules describing, besides the correspondence γ (t) �→ γ"(γ (t)),
the mapping t �→ "γ (t), which is equivalent to the consideration of " as a lifting of paths.
For this reason, in the general case, we shall look on " as a lifting of paths. There is one
important special case when both approaches to " are transparently equivalent: when only
paths γ without self-intersections are employed. This is a consequence of the fact that now
the map γ : J → γ (J ) is bijective as γ : J → M is injective. In particular, if for given γ

there is a subinterval J ′ ⊂ J such that the restricted path γ |J ′ is injective, the maps "γ |J ′ and
γ |J ′" are completely equivalent representations of " along γ |J ′.

The physical preference to interpret" as a section or lifting depends on the concrete choice
of M and the corresponding interpretation of γ . For example, if M is the spacetime of special
or general relativity and γ is the world line of (a real point-like) observer, then γ is without self-
intersections and " along γ can naturally be interpreted as a section in Sec(F, π,M)|γ (J ). On
the other hand, if M = E

3 is the Euclidean space of classical mechanics and γ : J → E
3 is the

trajectory of some point-like object, treated as an observer, then γ could have self-intersections
and, correspondingly, " is more easily treated as a lifting of paths.

Definition 4.3. The unique lifting of paths " or (multiple-valued) section along paths "

corresponding to the state vector ψ from conventional quantum mechanics will be called a
state lifting (of paths) or a state section (along paths) respectively.

For brevity, we call, by abuse of the language, a particular value of ", say "γ (t), a bundle
state vector (at a moment t , or, more precisely, at the (space) point γ (t) and at the instant t ,
i.e. at a spacetime point (γ (t), t) if M is treated as a spacetime model).

Since the mappings lx , x ∈ M , in (4.3) are isomorphisms, the correspondences

STATE VECTOR ⇔ STATE LIFTING OF PATHS ⇔ STATE SECTION ALONG PATHS (4.4)

are bijective (isomorphisms)31. Hence, the description of a quantum system via state vectors,
or liftings of paths, or sections along paths are equivalent.

On the basis of postulates 4.1 and 4.2, the formalism of conventional quantum mechanics
solely concerning the wavefunction (state vector) ψ can be transferred, equivalently, in the
Hilbert bundle description in terms of the state lifting " of paths. Equation (4.3) plays a major
role in this reformulation. In this direction, our first goal is the Hilbert bundle description of
the quantum evolution, i.e. the change of the state liftings/sections " in time. In section 5

31 In (4.4) the state sections are, generally, multiple-valued sections along paths.
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we shall see that the bundle evolution of a quantum system is represented by a suitable linear
transport along paths in the system’s Hilbert bundle. In the next, second, part of the present
investigation the corresponding (bundle) equations of motion will be derived.

We completely understand that even at this early, introductory, stage of our work, many
concrete problems arise. They are connected with the transferring and/or interpretation of
particular results of conventional quantum mechanics in the case of its bundle (re-) formulation.
These questions are, as a rule, out of the scope of the present work, devoted to the general
formalism, and have to be considered separately of it. Regardless of this, we want to pay
attention to one such problem which may lead to methodological difficulties.

It is well known [1–3] that, in most situations, the wavefunction (vector) of a particle is not
localized at a single space point, but it is spread over some space region that could be even the
entire space, as in the case of a momentum eigenstate. Prima facie, a superficial conclusion
can be made that such a state is included in the ‘local’ Hilbert space at some point, i.e. in the
fibre over it. Such a conclusion is generally entirely wrong (unless we are dealing with a state
localized at a single point or the base M consists of a single point)! Suppose ψ ∈ F is the
wavefunction of some quantum system with respect to some observer and ψ(x, t) is its value
at a space point x at time t ∈ J . Take the particular choice M = R

3 and let γ : J → R
3

be the observer’s trajectory32. Since the mappings lx , x ∈ M are (isometric) isomorphisms,
from (4.3) it follows that the bundle state vector "γ (t) is nonzero if the state vector ψ(x, t)

is nonzero. Let Wt = Suppψ(·, t) ⊂ R
3 = M be the support of ψ(·, t), i.e. ψ(x, t) �= 0 for

x ∈ Wt and ψ(x, t) = 0 for x �∈ Wt (if Wt �= M). The above implies "γ (t) �= 0 iff γ (t) ∈ Wt ,
in other words "γ (t) �= 0 iff π

(
"γ (t)

) ∈ Wt . Consequently, the nonzero bundle state vectors
are spread over the same region (of space) as the ‘original’ nonzero state vectors. Besides,
the nonzero bundle state vectors are in the ‘local’ Hilbert spaces attached to the corresponding
points in Wt ; namely, "γ (t) �= 0 is in the fibre π−1(γ (t)) ⊂ π−1(Wt). In conclusion, the state
liftings of paths are localized, i.e. are nonzero, in the same space region as the conventional
wavefunctions. Analogous result can be obtained if we take for M other space (-time) models,
such as V4, M4 etc.

Remark 4.2. The above interpretation of the case M = R
3 (or M = V4 etc) is quite

more natural than that of conventional quantum mechanics: the nonzero values of the state
liftings/sections are situated in the fibres just above the points at which the wavefunction
is nonzero, while its values belong to an abstract Hilbert space which is a highly nonlocal
object, associated with the whole space (-time) rather than with some particular point in it.
Mathematically our theory is valid if M is arbitrary manifold, but if M is not a space (-time)
model, the above (and other) ‘nice’ interpretation(s) could be lost. For example, if M consists
of a single point, M = {x}, we have F = Fx = l−1

x (F) and, according to note 4.4, we obtain
an isomorphic copy inF of the standard quantum mechanics. Now, generally, for γ : J → {x}
it is hard to find a ‘good’ interpretation, but if, for example, x is in R

3 (or in V4 etc), then γ

can be interpreted as a trajectory (world line) of an observer situated at a space point x during
the whole period of ‘observation’.

On one hand, as mentioned earlier, the postulates 4.1 and 4.2 are sufficient for the bundle
reformulation of the state vector (wavefunction) formalism. In particular, the probabilistic
interpretation of quantum mechanics is retained: since

〈ψ(t)|ψ(t)〉 = 〈"γ (t)|"γ (t)〉γ (t) (4.5)

which is a corollary of (3.1) and (4.3), the bundle state vector "γ (t) can be interpreted as
a probability amplitude. On the other hand, these postulates do not allow us to transfer in
32 Other choices, such as M = V4,M

4, U4, . . . , do not change anything in the next conclusions. The same concerns
the interpretation of γ .
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the bundle description the predictions of quantum mechanics concerning the observables.
To this end, new initial assertions are required. They will be presented in the second part
of this investigation in which the exploration of the observables in the bundle approach
begins. In short, their essence is the following: in the bundle approach the observables are
described via (Hermitian) liftings of paths or (multiple-valued) morphisms along paths (in
the bundle of restricted morphisms of the system’s Hilbert bundle or in the Hilbert bundle
of states respectively) and their mean values (mathematical expectations) are such that they
coincide with the mean values of the corresponding (Hermitian) operators representing the
same observables in the Hilbert space quantum mechanics. On the grounds of these assertions,
the whole machinery of quantum mechanics (of pure states) can be reformulated in terms of
fibre bundles. This will be done in the next parts of our work. Due to the just-mentioned
coincidence of the mean values of the operators and liftings corresponding to observables, the
predictions of Hilbert space and Hilbert bundle quantum mechanics are absolutely identical,
i.e. these are different representations of a single theory, quantum mechanics. For the bundle
description of mixed states, additional postulates are required. They will be presented further.
As we shall see, in the bundle approach the mixed states are represented via density liftings of
paths (or multiple-valued density sections along paths) such that the mean values of the liftings
(or sections) corresponding to observables coincide with the mean values of the corresponding
Hermitian operators (in the Hilbert space description) computed by means of the ordinary
density operator (matrix). Consequently, as in the case of pure states, now we also have
a complete coincidence of the predictions of Hilbert space and Hilbert bundle versions of
quantum mechanics.

Beginning with the next section, following the above lines, the purpose of this paper is
the bundle formulation of the general formalism of quantum mechanics.

4.4. Preliminary recapitulation

The summary and discussion of the bundle version of quantum mechanics will be presented in
the concluding part of this paper. Below we give a short abstract of them with the hope that it
will help for the better understanding of our investigation. It also serves as a partial motivation
for this paper.

The bundle formulation of quantum mechanics is a purely geometrical version of
conventional quantum mechanics to which it is completely equivalent; hence these are simply
different ‘faces’ of a single theory, quantum mechanics. The proposed geometric formulation
of quantum mechanics is dynamical in a sense that all geometrical structures employed for the
description of a quantum system depend on and are determined by the dynamical characteristics
of the system. The new form of the theory has three free parameters: the bundle’s base M ,
the set {lx |x ∈ M} point-trivializing isometric isomorphisms and the path γ : J → M . The
choice of these objects is external to quantum mechanics and is subject to factors such as the
physical interpretation of the theory and its connection with other physical theories. As a
working hypothesis, we suggest interpreting M as a space (-time) model and γ as a trajectory
(world line) of an observer along which the quantum evolution is studied.

In the Hilbert bundle description the system’s Hilbert space is replaced with a suitable
Hilbert bundle. In it the system state is represented via appropriate state lifting of paths in the
case of pure states or density liftings of paths if the state is mixed. In both cases, the quantum
evolution in time is characterized by a linear transport along γ of the state lifting or density
liftings in the system Hilbert bundle or in the bundle of its point-restricted morphisms over
the base respectively. The corresponding equations of motion are derived. The probabilistic
interpretation of quantum theory remains valid.
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In the new bundle approach, the observables are described via liftings of paths in the bundle
of restricted morphisms over the base in the Hilbert bundle of states. They are so defined that
their mean values coincide with the mean values of the corresponding Hermitian operators
representing observables in conventional quantum theory. Therefore the physical predictions
of the Hilbert space and Hilbert bundle versions of quantum mechanics are identical. The
bundle equations of motion, governing the time evolution of observables, are derived.

From the bundle’s view-point, an observable is an integral of motion iff it is a constant
lifting of paths, namely iff it is linearly transported in the bundle of restricted morphisms over
the base in the Hilbert bundle of states with respect to the linear transport induced in this bundle
by the evolution transport of state liftings.

We also pay attention to the bundle version of the different pictures of motion. The
corresponding equations of motion for the state liftings (or density liftings) and observables
are considered in the bundle pictures of motion. We point to an interesting result: in terms of
local frames, the bundle Heisenberg picture of motion corresponds to the choice of a suitable
normal frame, i.e. a frame in which the matrix of the evolution transport of state liftings is
the unit matrix. Since the normal frames are the mathematical objects corresponding to the
physical concept of an inertial frame, the above means that the (bundle) Heisenberg picture of
quantum mechanics is something like a ‘quantum mechanics in a (bundle) inertial frame’.

Finally, we consider problems concerning the role of observers, physical interpretation and
possible generalizations of bundle quantum mechanics. In these directions the new form of the
theory admits many developments, which is due to the aforementioned three free parameters
in it. We point that the presented formalism can be transferred in the relativistic region too.

5. The (bundle) evolution transport

The Hilbert bundle description of quantum evolution of a quantum system is the purpose of
this section. More precisely, we want to find the time dependence of the state liftings of
paths (or sections along paths) of a system provided the time dependence of its (conventional)
wavefunction (state vector) is known33. We shall prove that this is achieved via a suitable
linear transport along paths, called evolution transport, in the system’s Hilbert bundle34.

According to postulate 4.1, assertion (iii), the evolution of a system in the fibre F of the
system’s Hilbert bundle (F, π,M) is given via the evolution operator U (see section 2). This
operator has ‘transport-like’ properties, similar to (3.19)–(3.21). Indeed, using (2.1), we obtain
ψ(t3) = U(t3, t2)ψ(t2) = U(t3, t2)[ U(t2, t1)ψ(t1)], ψ(t3) = U(t3, t1)ψ(t1), and ψ(t1) =
U(t1, t1)ψ(t1) for all moments t1, t2, t3 and arbitrary state vector ψ . Hence

U(t3, t1) = U(t3, t2) ◦ U(t2, t1) (5.1)

U(t1, t1) = idF . (5.2)

Besides, by definition, U(t2, t1) : F → F is a linear unitary operator; i.e., for λi ∈ C and
ψi(t1) ∈ F , i = 1, 2, we have

U(t2, t1)
( ∑

i=1,2

λiψi(t1)

)
=

∑
i=1,2

λi U(t2, t1)ψi(t1) (5.3)

U†(t1, t2) = U−1(t2, t1). (5.4)

From (5.1) and (5.2), evidently, follows

U−1(t2, t1) = U(t1, t2) (5.5)
33 The corresponding bundle equations of motion will be derived in the second part of this investigation.
34 A treatment of quantum evolution as a ‘parallel’ transport is accepted in [75]. Similar understanding, but in a
different context, is maintained in [43].
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and consequently

U†(t1, t2) = U(t1, t2). (5.6)

If one takes as a primary object the Hamiltonian H, these facts are direct consequences
of (2.10).

Thus the properties of the evolution operator are very similar to those defining a (Hermitian)
linear transport along paths in a Hilbert bundle. In fact, below we show that the bundle analogue
of the evolution operator is one kind of such transport.

Along any path γ , we define the bundle analogue of the evolution operator U(t, s) : F →
F as a linear mapping Uγ (t, s) : Fγ(s) → Fγ(t), s, t ∈ J such that

"γ (t) = Uγ (t, s)"γ (s) (5.7)

for all instants of time s, t ∈ J . Hence Uγ connects the different time values of the bundle
state vectors. Analogously to (5.1) and (5.2), now we have35

Uγ (t3, t1) = Uγ (t3, t2) ◦ Uγ (t2, t1) t1, t2, t3 ∈ J (5.8)

Uγ (t, t) = idFγ(t)
t ∈ J. (5.9)

Comparing (5.7) with (2.1) and using (4.3), we find

Uγ (t, s) = l−1
γ (t) ◦ U(t, s) ◦ lγ (s) s, t ∈ J (5.10)

or

U(t, s) = lγ (t) ◦ Uγ (t, s) ◦ l−1
γ (s) s, t ∈ J. (5.11)

This shows the equivalence of the description of a quantum evolution via U and Uγ .
A trivial corollary of (5.10) is the linearity of Uγ and

U−1
γ (t, s) = Uγ (s, t). (5.12)

As lx : Fx → F, x ∈ M are linear isomorphisms, from (5.8)–(5.10) it follows that
U : γ �→ Uγ with Uγ : (s, t) �→ Uγ (s, t) =: Uγ

t→s : Fγ(t) → Fγ(s) is a linear transport along
paths in36 (F, π,M). This transport is Hermitian (see section 3). In fact, applying (3.8) to
Uγ (t, s) and using (5.10), we obtain

U‡
γ (t, s) = l−1

γ (t) ◦ U†(s, t) ◦ lγ (t). (5.13)

So, using (5.6), once again (5.10) and (5.5), we find

U‡
γ (t, s) = Uγ (t, s) = U−1

γ (s, t). (5.14)

Hence Uγ (t, s) is simultaneously Hermitian and a unitary operator, as it should be for any
Hermitian or unitary transport along paths in a Hilbert bundle (see section 3). Consequently,
U is an isometric transport along paths.

Above we defined the transport U by (5.7) from which (5.7)–(5.14) follow. It is a simple
exercise to prove that if U is defined via (5.10), the remaining equations of (5.7)–(5.14) are
fulfilled. Consequently, (5.7) and (5.10) are equivalent definitions of the transport U along
paths.

35 Equations similar to (5.8) and (5.8) below are stated in [43] in a case of a Hilbert bundle over the one-dimensional
time manifold.
36 In the context of quantum mechanics it is more natural to define Uγ (s, t) from Fγ (t) into Fγ (s) instead from Fγ (s)

into Fγ (t), as is the map Uγ
s→t = Uγ (t, s) : Fγ (s) → Fγ (t). The latter notation is better in the general theory of

transports along paths [34, 35]. Consequently, when applying results from [34, 35], we have to remember that they
are valid for the maps Uγ

s→t (or Uγ : (s, t) �→ Uγ
s→t ). That is why for the usage of some results concerning general

linear transports along paths from [34, 35] for Uγ (s, t) or Uγ one has to write them for Uγ
s→t (or Uγ ) and then use

the connection Uγ
s→t = Uγ (t, s) = U−1

γ (s, t) (or Uγ = U−1
γ ). Some results for Uγ

s→t and Uγ (s, t) coincide but this
is not always the case. In short, the results for linear transports along paths are transferred to the case considered in
this paper by replacing L

γ
s→t by Uγ (t, s) = U−1

γ (s, t).
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Definition 5.1. The isometric linear transport U along paths, defined via equation (5.7)
or (5.10), in the system’s Hilbert bundle (F, π,M) of states is called the evolution transport
(of the system) or the bundle evolution operator.

In this way, we see that the evolution transport U is a Hermitian (and hence unitary) linear
transport along paths in (F, π,M). Consequently, to any unitary evolution operator U in
the Hilbert space F there corresponds a unique isometric linear transport U along paths, the
evolution transport, in the Hilbert bundle (F, π,M) and vice versa.

Let us summarize. In the Hilbert bundle description, the time evolution of a quantum
system is represented by means of the evolution transport along paths in the system’s Hilbert
bundle. It connects the different time values of the state liftings according to (5.7) along the
reference path γ . Equation (5.10) is the link between the evolution transport and the evolution
operator; it is equivalent to (4.3) provided (5.7) is postulated.

6. Conclusion

In this paper we have prepared the background for a full self-consistent fibre bundle formulation
of nonrelativistic quantum mechanics. For this purpose we replaced the conventional Hilbert
space of quantum mechanics with a suitable Hilbert bundle. In this scene, as shown here, the
ordinary quantum evolution is described by means of certain linear transports along paths.

It is an advantage of the bundle description of quantum mechanics that it does not make
use of any particular model of the base M , but on this model depends the interpretation of
‘time’ t used. For instance, if we take M to be the three-dimensional Euclidean space E

3 of
classical (or quantum) mechanics, then it is natural to identify t with the absolute Newtonian
(global) time. However, if M is taken to be the Minkowski four-dimensional space M4, then
it is preferable to take for t the proper time of some (local) observer, but the global coordinate
time in some frame can also play the role of t . Principally different is the situation when the
pseudo-Riemannian space V4 of general relativity is taken as M: now t must be the local time
of some observer as a global time does not generically exist.

Generally, the spacetime model M is external to (bundle) quantum mechanics and has to
be determined by another theory, such as special or general relativity. This points to a possible
field of research: a connection between the quantities of the total bundle space and a concrete
model of M may result in a completely new theory. Elsewhere we shall show that exactly this
is the case with relativistic quantum mechanics.

There exist nonlinear versions of the standard Schrödinger equation, e.g. those introduced
and investigated by Doebner and Goldin (see, for instance, [76–79] and references therein).
Naturally one can ask whether the above-proposed description of the quantum evolution as a
linear transport along paths is valid mutatis mutandis for such equations. The answer is, in the
general case, negative, since such a description is due to the existence of a linear evolution
operator, which does not exist for nonlinear equations. At present the bundle description of
a quantum evolution governed by a nonlinear variants of the Schrödinger equation is open to
investigation. It is likely that for such equations an evolution transport should be defined as a
suitable, generally nonlinear, transport along paths in, possibly nonvector, fibre bundles.

The bundle approach to quantum mechanics will be developed in the continuation of this
paper. In particular, we intend to investigate the following topics from the novel fibre bundle
viewpoint: equations of motion, description of observables, pictures and integrals of motion,
mixed states, interpretation of the theory and possible ways for its further development and
generalizations.
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[4] Prugovečki E 1981 Quantum Mechanics in Hilbert Space (Pure and Applied Mathematics vol 92) 2nd edn (New

York: Academic)
[5] Landau L D and Lifshitz E M 1965 Quantum Mechanics: Non-Relativistic Theory (Course of Theoretical

Physics vol 3) 2nd edn (London: Pergamon) (Russian Transl. 1962, 1974 (Moscow: Nauka))
[6] Schutz B F 1982 Geometrical Methods of Mathematical Physics (Cambridge: Cambridge University Press)

(Russian Transl. 1984 (Moscow: Mir))
[7] Coquereaux R 1988 Riemannian Geometry, Fibre Bundles, Kaluza–Klein Theories and All That (World Scientific

Lecture Notes in Physics vol 16) (Singapore: World Scientific)
[8] Konopleva N P and Popov V N 1981 Gauge Fields 2nd edn (Chur: Hardwood) (1972 1st edn, 1980 2nd edn

(Moscow: Atomizdat) (Original Russian Edition))
[9] Husemoller D 1966 Fibre Bundles (New York: McGraw-Hill)

[10] Hermann R 1973 Geometry, Physics, and Systems (New York: Dekker)
[11] Hermann R 1970 Vector Bundles in Mathematical Physics vol 1 (New York: Benjamin)
[12] Hermann R 1970 Vector Bundles in Mathematical Physics vol 2 (New York: Benjamin)
[13] Kibble T W B 1979 Geometrization of quantum mechanics Commun. Math. Phys. 65 189–201
[14] Anandan J 1990 A geometric view of quantum mechanics Quantum Coherence: Proc. Conf. on Fundamental

Aspects of Quantum Theory (Columbia, SC, 1989) ed J S Anandan (Singapore: World Scientific)
See also Anandan J 1990 Preprint MPI-PAE/PTh 77/90
Anandan J 1991 Found. Phys. 21 1265–84

[15] Ashtekar A and Schilling T A 1997 Geometrical formulation of quantum mechanics Preprint LANL gr-
qc/9706069

See also Ashtekar A and Schilling T A 1997 Preprint CGPG 97/6-1
[16] Brody D C and Hughston L P 1997 Geometrization of statistical mechanics Preprint LANL gr-qc/9708032
[17] Anandan J and Aharonov Y 1990 Geometry of quantum evolution Phys. Rev. Lett. 65 1697–700
[18] Uhlmann A 1991 A gauge field governing parallel transport along mixed states Lett. Math. Phys. 21 229–36
[19] Wilczek F and Zee A 1984 Appearance of gauge structure in simple dynamical systems Phys. Rev. Lett. 52

2111–4
[20] Uhlmann A 1991 Parallel transport of phases Differential Geometry, Group Representations, and Quantization

(Lecture Notes in Physics No 379) ed J D Henning, W Lücke and J Tolar (Berlin: Springer) pp 55–72
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[70] Dombrowski P 1968 Krümmungsgrößen gleichungsdefinierter Untermannigfaltigkeiten Riemannscher
Mannigfaltigkeiten Mathematische Nachrichten 38 3/4 133–80

[71] Iliev B Z 2001 Fibre bundle formulation of nonrelativistic quantum mechanics: II. Equations of motion and
observables J. Phys. A: Math. Gen. 34 4919–4934 (following article)

(Iliev B Z 1998 Preprint LANL quant-ph/9804062)
[72] Goldin G A and Shtelen V 2000 On Galilean invariance and nonlinearity in electrodynamics and quantum

mechanics Preprint LANL quant-ph/0006067
[73] Giulini D 1996 On Galilei invariance in quantum mechanics and the Bargmann superselection rule Ann. Phys.,

NY 249 222–35
See also Giulini D 1995 Preprint Freiburg THEP-95/15
Giulini D 1995 Preprint LANL quant-ph/9508002

[74] Deotto E and Ghirardi G C 1998 Bohmian mechanics revisited Found. Phys. 28 1–30
See also Deotto E and Ghirardi G C 1997 Preprint LANL quant-ph/9704021

[75] Sardanashvily G A 2000 On quantum evolution as a parallel transport Preprint LANL quant-ph/0004050
[76] Doebner H-D and Goldin G A 1992 On a general nonlinear Schrödinger equation admitting diffusion currents

Phys. Lett. A 162 397
[77] Doebner H-D and Goldin G A 1996 Introducing nonlinear gauge transformations in a family of nonlinear

Schrödinger equations Phys. Rev. A 54 3764
[78] Goldin G A 2000 Perspectives on nonlinearity in quantum theory Proc. Int. Symp. ‘Quantum Theory

and Symmetries’ (Goslar, July 1999) (Int. Symp. ‘Quantum Theory and Symmetries’) ed H-D Doebner,
V K Dobrev, J-D Hennig and W Luecke (Singapore: World Scientific)

Goldin G A 2000 Preprint LANL quant-ph/0002013
[79] Doebner H-D, Goldin G A and Nattermann P 1999 Gauge transformations in quantum mechanics and the

unification of nonlinear Schrödinger equations J. Math. Phys. 40 49–63
See also Doebner H-D, Goldin G A and Nattermann P 1996 Preprint ASI-TPA/21/96
Doebner H-D, Goldin G A and Nattermann P 1997 Preprint LANL quant-ph/9709036


